Аддитивные технологии. Аддитивная технология - будущее, которое наступает. Современные аддитивные технологии

Все чаще в современной прессе и в глобальной сети можно встретить многочисленные публикации на тему аддитивных технологий, таких как например трехмерная печать(стереопечать, 3d-печать). Что же это такое? Это ни много не мало настоящая революция в производстве и изготовлении различного рода продукции: начиная от простых бытовых вещей и заканчивая сложными технологическими деталями и даже жилыми помещениями! Звучит невероятно и фантастически? Возможно, но в настоящее время технологии трехмерной печати получают все большее распространение. Аддитивные технологии полностью перекраивают всю сущность производства.

Отличие аддитивных технологий от традиционных

Чтобы уяснить ключевое отличие аддитивных технологий от привычных нам способов производства различных изделий, нужно понимать, что изготовить например какую-либо металлическую деталь – тот же болт или саморез, можно двумя принципиально различными способами. Первый способ всем нам хорошо известен – это механическая обработка: отрезание, отбивание, сверление отверстий и т.д. Берется брусок стали, из неё вытачиваются металлические прутки, на что расходуется значительное количество энергии и материала, далее из прутков вытачиваются уже готовые болты. Огромный минусы такого ставшего уже привычным способа производства очевидны – при изготовлении конечного продукта(в данном случае болта) большая часть исходного материала(стальной брусок) перемалывается в металлическую стружку, образуя огромное количество производственных отходов, да и расход материала согласитесь не самый рациональный. Есть конечно и другие классические способы изготовления, к примеру штамповка и литьё, однако и они имеют массу недостатков — например для изготовления методом литья необходимо сначала изготовить саму форму для заполнения, что достаточно дорого и требует специалистов высокой квалификации. Все это негативно сказывается на производительности. Создание форм актуально, если например заводу-изготовителю нужно выпустить большую партию продукции, а если несколько небольших? В этом случае изготовление форм ведет к большим издержкам и экономически нецелесообразно.

Теперь рассмотрим второй способ производства конечного продукта – он основан не на удалении части материала в результате механической обработки, а напротив на добавлении материала и наслаивании, в результате и получается готовая продукция. Отсюда и название – аддативные технологии(от английского слова «add» — добавлять,Additive Fabrication(AF) ,Additive Manufacturing(AM) ). Трехмерная печать не подразумевает никакого отрезания, распиливания, сверления. Происходит в буквальном смысле построение объекта c помощью машины послойного синтеза, которая вполне укладывается в название «3D Принтер». Во всяком случае условно можно сказать, что машина «печатает» продукцию. Как это происходит? Что используется в качестве материала? Это уже зависит от конкретной технологии трехмерной печати. К примеру стереолитография(Stereolithography) подразумевает использование лазера, под воздействием которого затвердевает сырье – жидкий фотополимер. Селективное лазерное спекание(Selective Laser Sintering — SLS) использует специальные порошки, частички которых соединяются под воздействием лазера, так называемая «экструзионная печать» использует разного рода пластичный материал, подающийся через сопла на поверхность, где воспроизводится продукт. Технологию действительно можно сравнить с классической печатью, только вместо бумаги может выступать различная поверхность, а вместо тонера пластичный материал.

Процесс изготовления шестеренки с использованием традиционных технологий:

Процесс изготовления шестеренки аддативным способом(трехмерная печать):

Возможности аддитивных технологий

Трехмерные принтеры могут использовать для печати самые разнообразные исходные материалы – например такие как дерево, керамика и даже металл и бетон. Возможности и перспективы аддитивных технологий поистине огромны, а сфера применения – очень обширна. От создания домашней утвари и простых бытовых предметов до сложных деталей и технических изделий. Они могут использоваться в дизайне и моделировании, создании мебели и осветительных приборов, музыкальных инструментов, «печатания» одежды и обуви, создании скульптур, картин, орнаментов и т.д, в архитектуре могут активно применятся для создания домов, причем не только уменьшенных моделей, но и готовых зданий в натуральную величину. Найдет технология применение и в кинематографе, учитывая потребность режиссеров в реквизите. Широчайшие возможности открывает 3d –печать для медицины – печать точных копий моделей человеческих органов и тканей поможет квалифицированному обучению медиков, созданию протезов и т.д. В автомобилестроении эта технология ускорит создание сложных механизмов – например мостов, коробок передач, головок блока цилиндров.

медицинский протез для ноги, изготовленный с помощью трехмерной печати

Демонстрация работы 3D принтера и различные продукты, изготовленные с его помощью:

Вообще если брать именно сферу обучения, то возможности 3-d печать представляет просто неограниченные – создание макетов, наглядная демонстрация уменьшенных копий реальных деталей и механизмов. Пример – необходима демонстрация учащимся устройства двигателя внутреннего сгорания. Моментально можно загрузить файл модели и распечатать её уменьшенную копию. Таким образом, модели сложных технических систем будут на руках буквально у каждого учащегося. Возможна даже распечатка не просто макета, а реально работающей уменьшенной копии устройства.

Наглядная модель 8-циллиндрового двигателя, напечатанного на 3D принтере:

Применятся трехмерная печать может также в кулинарии(«печать» тортов и пирожных), робототехнике(производство роботов путем «печати» с нуля), машиностроении(изготовление сложных деталей) и авиакосмической промышленности(создание двигателей и корпусов космических кораблей например). Для живописи появится возможность рисования в пространстве. Уже сейчас существуют и продаются 3d-ручки, дающие такую возможность. Как видно из приведенных выше примеров, аддативные технологии затрагивают практически все сферы жизни, что говорит о подлинной революции и коренном преобразовании способа производства и изготовления вещей, деталей и механизмов. По сути вся основная сложность в изготовлении конечной детали аддативным способом заключается в проектировании и создании компьютерной модели, которая затем может быть легко воспроизведена с помощью трехмерной печати. Если ранее трехмерная печать применялась только лишь для быстрого создания прототипов изделий и продуктов, то уже сейчас речь идет о серийном производстве. Сложность изготавливаемого изделия по сути ограничивается только сложностью его компьютерной модели.

Обувь, напечатанная на 3D принтере, верхняя часть ботинка изготовлена из прочного хлопка

Пространственное рисование с помощью 3d-ручек – еще один пример реализации аддативных технологий:

Геометрия изделия практически не имеет значения, аддативный способ позволяет изготовить деталь или продукт любой сложности, конструктивные ограничения, в отличие от традиционного способа производства, отсутствуют, главное смоделировать образец в компьютерной программе. Это позволит изготовить невероятно красивые в плане дизайна и оформления товары, производство которых ранее было невозможным из-за естественных ограничений традиционной технологии. Аддативная технология производства позволяет получать легкие и в то же самое время, очень прочные детали конструкции, путем удаления из них избыточного материала, без которого нельзя обойтись при изготовлении обычными способами. При уменьшении веса в этом случае нисколько не будет страдать прочность и функциональность конечного изделия.

Существует не только возможность подготовить компьютерную модель и распечатать её, но и проделать обратный процесс – перенести уже готовое изделие в компьютерный CAD-файл, для последущего тиражирования или модификации. Для этого используется оптическое сканирование материального объекта

Замок Андрея Руденко — 3D принтер печатает бетоном замок в натуральную величину:


Результат:

Преимущества аддитивных технологий

Перечислим некоторые очевидные преимущества аддативных технологий.

1.Сокращение технологической цепочки и резкое уменьшение отходов от производства
Создание конечного продукта классическими способами как правило включает в себя несколько этапов. Вышеупомянутый простой пример с изготовлением болта(Стальной брусок -> Металлический пруток -> Готовый болт) включает в себя несколько этапов и подразумевает огромные усилия, расход энергии и материала. С помощью 3d-печати изготовление такого болта будет происходить существенно быстрее и с меньшими затратами.

2.Сильная индивидуализация производимого продукта
Поскольку внесение изменений в исходный файл для печати не требует длительных усилий, как переработка реальной модели, это позволит в сжатые сроки на основе имеющейся исходной модели создать индивидуальный уникальный продукт, изменив или дополнив оригинал. Таким образом можно создавать огромные множества различных вариаций одного и того же продукта.

3.Ускорение внедрения новых идей
Конструкторы смогут намного быстрее воплощать свои задумки в реальность. Разработав новый вариант двигателя и создав его модель в компьютерной программе например, можно будет в течении нескольких часов распечатать готовый пробный образец, внести изменения, оптимизировать, доработать и т.д.

4.Возможность изготовления деталей высокой сложности
Некоторые детали, которые затруднительно или вообще невозможно изготовить традиционной механической обработкой, могут быть легко «напечатаны», если предварительно создать готовую компьютерную модель.

5.Относительная легкость обучения персонала
Создание подробной трехмерной модели какого-либо изделия, конечно не самое простое занятие, но все же это существенно проще, чем воспроизвести подобную пробную деталь в реальности вручную. Обучить человека, имеющего пространственное воображение работе с компьютерной программой намного проще, чем осваивать несколько профессий для самостоятельного создания прототипа изделия в натуральную величину руками.

Пример 3D печати деревом:

Пример 3D печати металлом:

Заключение

Возможно, спустя какое-то время технологии трехмерной печати станут для нас чем то обыденным, точно так же как прочно в повседневную жизнь вошли компьютеры, интернет, планшеты, смартфоны и ноутбуки. Однако сейчас это все ещё выглядит как подлинный прорыв в науке. Глядя на возможности этих гигантских машин, воспроизводящих сложные детали и конструкции, невольно поражаешься. Иногда даже кажется, что все происходящее – это сюжет очередного футуристического фильма. Однако это не так, аддативные технологии существуют и развиваются. Мы наблюдаем настоящую революцию шестого экономического уклада на марше. По всей видимости, это очередной этап в научном развитии человечества и за подобными способами производства стоит большое будущее

Аддитивная технология - сравнительно молодое, но очень популярное явление. Название этой технологии происходит от англоязычного термина Additive Manufacturing, что в буквальном переводе означает “производство через добавление”. Аддитивная технология означает метод изготовления путем послойного наращивания сырья.

Самый известный пример применения аддитивных технологий - популярные 3D-принтеры. Все виды данных устройств работают по технологии послойного синтеза.

Аддитивные технологии производства совершили революционный прорыв во многих отраслях - медицинской, строительной, конструкторской, машиностроительной, дизайнерской.

Экскурс в историю

Технологии 3D-печати считают главным открытием XXI века, но история этих инновационных устройств началась еще в XX веке. Изобретателем технологии и основателем новой отрасли стал инженер Чарльз Халл, основатель и владелец компании 3D-Systems.

В 1986 году Чарльз собрал первый в истории стереолитографический 3D-принтер. Примерно в тот же период другой инженер - Скотт Трамп - создал первый в своем классе FDM-аппарат. Два этих знаковых изобретения положили начало стремительного развития рынка трехмерной печати.

Новый этап развития

Следующим шагом в эволюции 3D-печати стало внедрение технологии послойного синтеза в корпус обычного настольного 3D-принтера, которое осуществили студенты Массачусетского технологического университета Тим Андерсон и Джимми Бредт. Впоследствии ими была основана компания Z Corporation, долгое время остававшаяся лидером отрасли.

Современные аддитивные технологии

Сейчас аддитивные технологии переживают период мощнейшего развития и повсеместной популяризации.

Исторически самая первая и точная аддитивная технология - стереолитография. Это метод поэтапного отверждения полимера при помощи лазера. Данную технологию применяют в прототипировании, при изготовлении макетов и элементов дизайна с высоким уровнем детализации.

Селективное лазерное спекание - инновационный метод отверждения жидкого фотополимера. Данная технология позволяет работать с цементом, керамической глиной, сложными полимерами, металлическим порошком.

Наиболее востребованными в бытовом смысле остаются FDM-принтеры, воссоздающие объекты путем наслоения пластиковой нити. Ранее принтеры были способны создавать объекты в одном цветовом решении, но сейчас на рынке появились устройства, использующие несколько видов цветных пластиковых нитей.

Центр аддитивных технологий

На российском рынке существует молодая компания, которая специализируется на применении аддитивных технологий. ОАО «Центр аддитивных технологий» работает на стыке компетенций дизайна, проектирования и расчетов, оптимизации технических решений и производства.

Компания располагает большим парком 3D-принтеров промышленного масштаба ведущих мировых производителей: MK Technology GmbH, EOS GmbH, 3D Systems, Stratasys, Envisiontec.

Основное направление работы центра - сотрудничество с предприятиями с целью разработки и реализации новой продукции и уникальных технологий. Также центр специализируется на разработке и производстве настольных портативных 3D-принтеров и сканеров. Данные 3D-устройства способны воплотить технологии прототипирования в бытовых условиях и идеально подходят для первого знакомства с аддитивными технологиями и основами 3D-печати.

Аддитивные технологии в машиностроении

Аддитивные технологии активно применяются в автомобильной отрасли. Команда американского инженера Джима Корра, основателя Kor Ecologic, более 15 лет работает над проектом Urbee - первым прототипом 3D-автомобиля. Следует сказать, что на принтере напечатан лишь кузов и некоторые детали - каркас авто металлический.

Данный автомобиль развивает небольшую максимальную скорость в 112 километров, но обладает низким лобовым сопротивлением благодаря дизайну корпуса и способен проезжать на электродвигателе порядка 65 километров.

Аддитивная технология используется и в прототипе американской компании Local Motors, которая готовит к массовому производству свои электрокары. Прототипы компании обладают современным дизайным, большим запасом хода и искусственным интеллектом.

Аддитивные технологии: применение

В современно мире аддитивные технологии применяются во многих отраслях и потенциально могут использоваться в каждой. Мировые таблоиды периодически потрясают новости о том, как на 3D-принтере напечатали оружие, человеческий орган, одежду, дом, автомобиль.

Потенциал развития данных технологий действительно высок и способен на порядок ускорить развитие научного-технического прогресса - научные лаборатории при помощи 3D-принтеров создают инновационные материалы и ткани. Применение аддитивных технологий в промышленности позволяет производителям ускорить прототипирование новых образцов и сократить путь от идеи до реализации. Архитектурная и строительная отрасли пытаются использовать потенциал аддитивных технологий на 100 %. Дизайнерский бизнес переживает новый этап развития благодаря аддитивному оборудованию.

Перспективы развития отрасли крайне благоприятны. Финансовые аналитики предсказывают рынку 3D-печати стремительный рост. Научно-исследовательские центры, которые занимаются аддитивными разработками, финансируются оборонным комплексом и медицинскими государственными институтами

Применение новых технологий - главный тренд последних лет в любой сфере промышленного производства. Каждое предприятие в России и мире стремиться создавать более дешевую, надежную и качественную продукцию, использую самые совершенные методы и материалы. Использование аддитивных технологий - один из ярчайших примеров того, как новые разработки и оборудование могут существенно улучшать традиционное производство.

Что такое аддитивные технологии?

Аддитивные технологии производства позволяют изготавливать любое изделие послойно на основе компьютерной 3D-модели. Такой процесс создания объекта также называют «выращиванием» из-за постепенности изготовления. Если при традиционном производстве в начале мы имеем заготовку, от которой оптом отсекаем все лишнее, либо деформируем ее, то в случае с аддитивными технологиями из ничего (а точнее, из аморфного расходного материала) выстраивается новое изделие. В зависимости от технологии, объект может строиться снизу-вверх или наоборот, получать различные свойства.

Общую схему аддитивного производства можно изобразить в виде следующей последовательности:

Первые аддитивные системы производства работали главным образом с полимерными материалами . Сегодня 3D-принтеры , олицетворяющие аддитивное производство, способны работать не только с ними, но и с инженерными пластиками , композитными порошками , различными типами металлов , керамикой, песком . Аддитивные технологии активно используются в машиностроении, промышленности, науке, образовании, проектировании, медицине, литейном производстве и многих других сферах.

Наглядные примеры того, как аддитивные технологии применяются в промышленности - опыт BMW и General Electric:

Преимущества аддитивных технологий

  • Улучшенные свойства готовой продукции. Благодаря послойному построению, изделия обладают уникальным набором свойств. Например, детали, созданные на металлическом 3D-принтере по своему механическому поведению, плотности, остаточному напряжении и другим свойствам превосходят аналоги, полученные с помощью литья или механической обработки.
  • Большая экономия сырья. Аддитивные технологии используют практически то количество материала, которое нужно для производства вашего изделия. Тогда как при традиционных способах изготовления потери сырья могут составлять до 80-85%.
  • Возможность изготовления изделий со сложной геометрией. Оборудование для аддитивных технологий позволяет производить предметы, которые невозможно получить другим способом. Например, деталь внутри детали. Или очень сложные системы охлаждения на основе сетчатых конструкций (этого не получить ни литьем, ни штамповкой).
  • Мобильность производства и ускорение обмена данными. Больше никаких чертежей, замеров и громоздких образцов. В основе аддитивных технологий лежит компьютерная модель будущего изделия, которую можно передать в считанные минуты на другой конец мира - и сразу начать производство.

Схематично различия в традиционном и аддитивном производстве можно изобразить следующей схемой:

Аддитивное производство: технологии и материалы

Под аддитивным производством понимают процесс выращивания изделий на 3D-принтере по CAD-модели. Этот процесс считается инновационным и противопоставляется традиционным способам промышленного производства.

Сегодня можно выделить следующие технологии аддитивного производства:

  • FDM (Fused deposition modeling) - послойное построение изделия из расплавленной пластиковой нити. Это самый распространенный способ 3D-печати в мире, на основе которого работают миллионы 3D-принтеров - от самых дешевых до промышленных систем трехмерной печати. FDM-принтеры работают с различными типами пластиков, самым популярным и доступным из которых является ABS. Изделия из пластика отличаются высокой прочностью, гибкостью, прекрасно подходят для тестирования продукции, прототипирования, а также для изготовления готовых к эксплуатации объектов. Крупнейшим в мире производителем пластиковых 3D-принтеров является американская компания Stratasys .
    .

  • SLM (Selective laser melting) - селективное лазерное сплавление металлических порошков. Самый распространенный метод 3D-печати металлом. С помощью этой технологии можно быстро изготавливать сложные по геометрии металлические изделия, которые по своим качествам превосходят литейное и прокатное производство. Основные производители систем SLM-печати - немецкие компании SLM Solutions и Realizer .
    .

  • SLS (Selective laser sintering) - селективное лазерное спекание полимерных порошков. С помощью этой технологии можно получать большие изделия с различными физическими свойствами (повышенная прочность, гибкость, термостойкость и др). Крупнейшим производителем SLS-принтеров является американский концерн 3D Systems .
    .

  • SLA (сокращенно от Stereolithography) - лазерная стереолитография, отверждение жидкого фотополимерного материала под действием лазера. Эта технология аддитивного цифрового производства ориентирована на изготовление высокоточных изделий с различными свойствами. Крупнейшим производителем SLA-принтеров является американский концерн 3D Systems .
    .

В отдельную категорию стоит вынести технологии быстрого прототипирования . Это способы 3D-печати, предназначенные для получения образцов для визуальной оценки, тестирования или мастер-моделей для создания литейных форм.

  • MJM (Multi-jet Modeling) - многоструйное моделирование с помощью фотополимерного или воскового материала. Эта технология позволяет изготавливать выжигаемые или выплавляемые мастер-модели для литья, а также - прототипы различной продукции. Используется в 3D-принтерах серии ProJet компании 3D Systems.
  • PolyJet - отверждение жидкого фотополимера под воздействием ультрафиолетового излучения. Используется в линейке 3D-принтеров Objet американской компании Stratasys . Технология используется для получения прототипов и мастер-моделей с гладкими поверхностями.
  • CJP (Color jet printing) - послойное распределение клеящего вещества по порошковому гипсовому материалу. Технология 3D-печати гипсом используется в 3D-принтерах серии ProJet x60 (ранее называлась ZPrinter). На сегодняшний день - это единственная промышленная технология полноцветной 3D-печати. С ее помощью изготавливают яркие красочные прототипы продукции для тестирования и презентаций, а также различные сувениры, архитектурные макеты.

Аддитивные технологии в России

Отечественные предприятия с каждым годом все более активно используют системы 3D-печати в производственных и научных целях. Оборудование для аддитивного производства, грамотно встроенное в производственную цепочку, позволяет не только сократить издержки и сэкономить время, но и начать выполнять более сложные задачи.

Компания Globatek.3D с 2010 года занимается поставкой в Россию новейших систем 3D-печати и 3D-сканирования. Оборудование, установленное нашими специалистами, работает в крупнейших университетах (МГТУ им. Баумана, МИФИ, МИСИС, Приволжском, СГАУ и других) и промышленных предприятиях, учреждениях ВПК и аэрокосмической отрасли.

Репортаж телеканала «Россия» об использовании SLM 280HL, установленном специалистами Globatek.3D в Самарском государственном аэрокосмическом университете:

Специалисты GLobatek.3D помогают профессионалам из различных областей подобрать 3D-оборудование, которое будет максимально эффективно решать задачи, стоящие перед предприятием. Если ваша компания планирует приобрести оборудование для аддитивного производства, позвоните по телефону +7 495 646-15-33 , и консультанты компании Globatek.3D помогут вам с выбором.

Globatek.3D - 3D-оборудование для профессионалов.

Цифровое производство с использованием аддитивного метода заключается в послойном создании объекта любой сложности. Аддитивные технологии принципиально отличаются от тех, которыми пользовались до недавнего времени. Их главное отличие в том, что они являются не вычитающими, как, к примеру, метод ЧПУ обработки, а собирательными. Иными словами, происходит собирание изделия из изготовленных порошковой композицией деталей. По сравнению с техникой литья, штамповки или обработки ЧПУ данная технология повышает производительность до тридцати раз, но самое главное, что она дает возможность получить детали, которые традиционными способами было невозможно создать.

Инновационные 3D-аддитивные технологии позволяют создавать модели любых форм и размеров, так как послойной процесс синтеза происходит слой за слоем. Данный способ производства пользуется таким методом, как прототипирование. Этодает возможность создавать не готовый объект, который можно использовать для конкретных целей, а его прототип, позволяющий оценивать возможности и характеристики модели, ее внешние данные и т. д.

Прототипы можно представлять заказчикам, а такжеиспользовать в маркетинговых целях. К примеру, на автомобильных выставках часто используются модели, созданные с помощью быстрого прототипирования, для того чтобы представить их потенциальным заказчикам. Данная технология позволяет производить прототипы быстро,а главное - недорого по сравнению со стандартными методами производства.

Технологии аддитивного производства широко используются для уменьшения затрат при проектировании за счет определения возможных ошибок на ранних стадиях проектирования. Кроме того, данная технология сокращает время выхода продукта на рынок за счет усиления связи между заказчиком и проектировщиком. Она практически полностью исключает трудоемкий и длительный этап изготовления опытных образцов.

История развития и сфера применения 3D-аддитивных технологий

Многие считают объемную печать изобретением 21 столетия, однако техника аддитивной печати зародилась еще в восьмидесятых годах прошлого века. И ее отцом считают Ч. Халла - человека, сконструировавшего первый стереолитографический 3D-принтер, работающий на SLA-технологии. Вскоре другой инженер - С. Крамп смог спроектировать и создать FDМ-принтер. И, несмотря на то, что данные технологии печати немного отличаются друг от друга, их объединяет один принцип - послойное выращивание трехмерной модели. К концу девяностых годов обе технологии стали применяться в промышленности. Чуть позже 3D-технология была внедрена двумя студентами Массачусетского института в настольные принтеры, и сегодня аддитивные технологии, технологии 3D-моделирования широко используют не только в производстве, но и в быту.

На данный момент современные технологии цифрового производства применяются в строительстве, архитектуре, медицине, космонавтике, машиностроении и других сферах деятельности. Так, например, аддитивные технологии в машиностроении позволяют создавать качественные прототипы моделей, помогающих изучить все характеристики будущего изделия или агрегата. При создании прототипов чаще всего применяется стереолитографический метод AF-печати, при котором слои жидкого полимера отвердевают благодаря использованию лазера. Методика позволяет получать прототипы сложнейших объектов с множеством мелких элементов, в том числе нестандартной формы.

Какие задачи решает применение аддитивных технологий на цифровом производстве?

Интегрированная компьютерная цифровая система управления производством включает в себя применение средств численного моделирования, трехмерной (3D) визуализации, инженерного анализа и совместной работы, предназначенных для разработки конструкции изделий и технологических процессов их изготовления.

Проектирование цифрового производства- это концепция технологической подготовки производства в единой виртуальной среде с помощью инструментов планирования, проверки и моделирования производственных процессов. Технологии цифрового производства - это, прежде всего, процессы перевода цифрового дизайна в физический объект.

Применение аддитивных технологий решает такие задачи цифровых производств, какмодернизация и автоматизация действующих и проектирование новых эффективных машиностроительных производств различного назначения, средств и систем их оснащения, а также производственных и технологических процессов с использованием автоматизированных систем технологической подготовки производства.

Аддитивные технологии - один из главных мировых трендов, упоминаемых в контексте новой промышленной революции. Ежегодный рост этого рынка, который на самом деле еще не сформирован и не имеет четких границ, варьируется в пределах 20-30%.

Так, ведущая консалтинговая компания в индустрии 3D-печати Wohlers Associates сообщила в своем очередном ежегодном отчете (Wohlers Report 2017), что индустрия аддитивного производства выросла в 2016 году на 17,4% (в 2015-м - на 25,9%) и составляет сейчас свыше $6 млрд. Если в 2014 году системы 3D-печати выпускали 49 компаний, то по итогам прошлого года число производителей увеличилось до 97. Эксперты дают самые оптимистичные прогнозы - по оценкам аналитической компании Context, рынок аддитивных технологий достигнет $17,8 млр уже к 2020 году. Аналитики The Boston Consulting Group посчитали: если к 2035 году компаниям удастся внедрить 3D-печать хотя бы на 1,5% от своих общих производственных мощностей, то объем рынка превысит к этому времени $350 млрд.

Ажиотаж вокруг этой темы вполне объясним. В отличие от традиционных технологий обработки металла, аддитивное производство построено не на вычитании, а на добавлении материала. На выходе получаются детали сложной геометрической формы, сделанные в короткие сроки. Когда скорость изготовления продукции сокращается в десятки раз и коренным образом меняются издержки, это меняет всю экономику машиностроения.

За счет чего происходит удешевление производства? Во-первых, снижается число комплектующих частей создаваемых деталей. Например, чтобы изготовить обычным методом топливную форсунку для реактивного двигателя, необходимо приобрести около 20 разных запчастей и соединить их с помощью сварки, что является трудоемким и затратным процессом. Применение же 3D-печати позволяет создавать форсунку из одного цельного куска.

Благодаря этому снижается и вес готовой детали, что особенно ценно для авиационной отрасли. Производители авиадвигателей уже научились создавать аддитивным способом различные кронштейны и втулки, которые на 40-50% легче своих «традиционных» аналогов и не теряют при этом прочностных характеристик. Почти вдвое удается снизить вес и отдельных деталей в вертолетостроении, например, связанных с управлением хвостовым винтом российского вертолета «Ансат». Уже появились и первые прототипы 3D-печатных четырехцилиндровых автомобильных двигателей, которые на 120 кг легче стандартных аналогов.

Другой важный момент - экономия исходного сырья и минимизация отходов. Собственно, сама суть аддитивных технологий заключается в том, чтобы использовать ровно столько материала, сколько требуется для создания той или иной детали. При традиционных способах изготовления потери сырья могут составлять до 85%. Но наиболее, пожалуй, важное преимущество аддитивных технологий заключается в том, что трехмерные компьютерные модели деталей можно мгновенно передавать по сети на производственную площадку в любую точку мира. Таким образом, меняется сама парадигма промышленного производства - вместо огромного завода достаточно обладать локальным инжиниринговым центром с необходимым 3D-оборудованием.

Впрочем, так обстоят дела в теории. На практике же сфера аддитивного производства - это история про поливариативность, про то, как технологии опередили возможные сценарии их применения. Вся передовая промышленная общественность осознает, что в их руках находится крайне перспективная базовая технология, но что с ней делать - остается открытым вопросом.

На сегодняшнем этапе главной задачей является как раз поиск сфер применения аддитивных технологий, и пока эту проблему еще никто не решил. Не найден ответ и на другой фундаментально важный вопрос: где находится тот «водораздел», при котором применение аддитивных технологий становится экономически эффективнее традиционных, классических способов - штамповки и литья? К примеру, ни один из крупных мировых игроков по производству газовых турбин, в том числе и на российском рынке, пока не определился в том, какая из конкурирующих технологий будет применяться в будущем для производства лопаток для двигателя самолета - аддитивные технологии или традиционное литье.

Программы поддержки аддитивной промышленности в зарубежных странах сводятся в основном к двум направлениям - финансированию НИОКР и формированию консорциумов, объединяющих предприятия, исследовательские центры и университеты.

К примеру, в США в 2012 году был создан Национальный институт инноваций в области аддитивной промышленности («America Makes») с целью объединения усилий американских компаний и научных кругов, занимающихся передовыми производственными технологиями. Общая стоимость проекта составила $70 млн, из них $30 млн вложило правительство. Основным куратором Института выступает Министерство обороны США, поэтому созданный акселератор поддерживает инновационные разработки, связанные также с военной сферой. Такие, например, как напечатанный на 3D-принтере гранатомет RAMBO .

Практически каждый десятый 3D-принтер произведен в Китае, а местный рынок аддитивных технологий, согласно прогнозам, будет показывать ежегодный рост на 40% и превысит к 2018 году 20 млрд юаней . При помощи технологии 3D-печати цементными смесями китайцы даже печатают жилые дома и «офисы будущего» на берегу Персидского залива. Ключевой структурой в стране, объединяющей несколько десятков местных инновационных центров, является Индустриальный альянс Китая по технологиям 3D-печати.

Россия пока отстает от стран – технологических лидеров по вкладу в общий рынок аддитивных технологий. Но я бы не стал называть это отставание критичным. Просто потому, что глобальная конкурентная борьба ведется не на «поляне» создания непосредственно аддитивных машин, принтеров и порошков. Конкуренция состоит в поиске рыночных ниш применения аддитивных технологий. Выиграет в ней не тот, кто нарастит производство своих аддитивных установок или сырья, а тот, кто поймет, что именно нужно печатать, для чего, и в каких областях это принесет максимальный экономический эффект.

В оживленных дискуссиях, которые ведутся сейчас на тему развития аддитивных технологий, противопоставляются обычно две крайности. Одна из них - «мы напечатаем всё»: дома, самолеты, танки, ракеты. Другая крайность – «все аддитивные технологии экономически неэффективны». И это тоже одна из ключевых системных проблем.

На сегодняшний день можно четко очертить только такие направления применения аддитивных технологий, как прототипирование и создание деталей сверхсложной геометрии. Например, на рынке систем прототипирования присутствуют сегодня более 30 отечественных серийных производителей 3D-принтеров, использующих технологию печати пластиковой нитью. Они выпускают около 5 000 принтеров ежегодно. Причем доля российских комплектующих в этих изделиях составляет порядка 70%.

В этот небольшой круг направлений можно добавить также быстрое мелкосерийное производство изделий по индивидуальному заказу. Однако производство конечных продуктов и быстрое изготовление прототипов – это две разные производственные «философии». Аддитивные технологии призваны, скорее, дополнить традиционные методы металлообработки, нежели заменить их, как предрекают многие эксперты.

Что происходит сейчас с мировой индустрией? Из большой промышленности, нацеленной на достижение эффекта масштаба, она превращается в глобальную гибкую сеть индивидуализированных производств. Аддитивные технологии также позволяют современному производству мигрировать из продуктового в сервисный сегмент.

Простой пример, уже реализованный на практике, – беспилотный летательный аппарат для нужд обороны, полностью напечатанный на 3D-принтере. Так как при его проектировании и изготовлении все основные процессы были автоматизированы, нет никакой нужды держать на каком-то заводе большой запас запчастей для этой техники. Вместо того чтобы отправлять ремонтировать беспилотник на завод, необходимые элементы можно будет печатать прямо на месте. Рабочие лопатки двигателей пока не печатают, но уже осуществляют их ремонт методом лазерной порошковой наплавки.

Чисто гипотетически можно провести аналогичную параллель с авианосцем, находящемся в походе, или с поездом. Имеющийся в распоряжении ремонтников принтер помог бы доработать или отремонтировать определенные детали, например, те же лопатки. Таким образом, аддитивные технологии, вероятнее всего, займут свое место именно в сервисном сегменте, отражая один из главных трендов развития современных промышленных технологий – кастомизацию продукции под потребителя.

В этой связи государственная политика по развитию данной сферы в России, должна опираться на следующие основные направления. Во-первых, это создание условий для снижения рисков, связанных с пилотным внедрением аддитивных технологий. В частности, с недавних пор действует новый механизм субсидирования, когда государство компенсирует предприятию 50% расходов, понесенных им при производстве и реализации пилотных партий промышленной продукции. Во-вторых, поддержку проектам в сфере аддитивных технологий оказывает Фонд развития промышленности, выдавая компаниям целевые льготные займы от 50 до 500 млн рублей под 5% годовых. Кроме того, участники рынка могут претендовать на финансовую поддержку со стороны государства для погашения части понесенных затрат на НИОКР.

Стимулирование разработок в сфере аддитивного производства необходимо поддерживать, так как их применение в современной промышленности – это долгий поиск, путем проб и ошибок, оптимальных ниш для решения конкретных задач. Например, можно создать что-то вроде «открытой библиотеки» технологических решений, объясняющей, как на конкретном станке, используя конкретный порошок, можно изготовить определенную деталь.

Другая важная задача – формирование эффективных площадок для взаимодействия конечных заказчиков с производителями материалов и оборудования. Такой Центр аддитивных технологий уже создается Ростехом на базе производителя газотурбинных двигателей НПО «Сатурн», имеющего многолетний опыт работы в области аддитивных технологий. Идею создания центра поддержали крупнейшие представители российской авиационной отрасли: Роскосмос, ОАК, ОДК, «Вертолеты России», «Технодинамика», КРЭТ и др.

Кроме того, тема аддитивных технологий - это прерогатива стартапов. Сейчас они зачастую просто скупаются мировыми технологическими гигантами. И сложно определить истинный мотив принятия данных решений: является ли это искренним желанием вкладываться в перспективное аддитивное направление, или же это просто попытка повысить свою капитализацию за счет своевременного поддержания модного тренда.

Так, в прошлом году американский концерн General Electric приобрел за $1,4 млрд две европейские компании, специализирующиеся на 3D-печати, - шведскую Arcam AB и немецкую SLM Solutions Group AG. Корпорация Siemens увеличила до 85% долю в британской компании Materials Solutions, специализирующейся на аддитивных технологиях в газотурбостроении. В начале 2017 года BMW, Google и Lowe’s сообща инвестировали $45 млн в американский стартап Desktop Metal, занимающийся созданием инновационной технологии 3D-печати металлических изделий. В общей сумме инвесторы вложили в этот проект, состоящий из 75 инженеров и программистов, уже около $100 млн

В связи с этим важно не допустить ситуации, при которой мы могли бы потерять наши успешные российские стартапы в сфере аддитивного производства. Разумеется, нельзя обойтись и без подготовки соответствующих инженерных кадров, которые могли бы профессионально разбираться в том, что целесообразно печатать, а что эффективнее продолжать делать традиционным методом.

Таким образом, основная проблема на сегодня заключается не в том, чтобы разработать современный отечественный 3D-принтер или создать качественные порошки (технологии ради самой технологии – довольно бессмысленная вещь), а в том, чтобы в нужном месте правильно применить уже имеющиеся на рынке разработки. Для этого у нас должны быть российские компании-драйверы, которые активно работали бы с этими технологиями, и максимально рационально и эффективно применяли бы их на практике.

Это госкорпорация Росатом, которая делает сейчас особую ставку на развитие аддитивных технологий, формируя собственную базу оборудования, материалов и технологий для выхода на новые внешние рынки. Это передовые наши компании в авиационной и ракетно-космической отрасли, которые объединились на базе упомянутого мной центра аддитивных технологий. Это Ростех, в состав которого входит «Объединенная двигателестроительная корпорация» (ОДК) – один из главных российских драйверов внедрения аддитивных технологий. Кроме того, в регионах создаются инжиниринговые центры – «точки роста» для инновационных компаний, которые помогают коммерциализировать разработки и доводить лабораторные образцы продукции до ее серийного производства.

Подобные, по-своему прорывные, примеры уже есть. Аддитивные технологии были успешно применены при изготовлении деталей двигателя ПД-14 для гражданской авиации, а также в конструкции нового газотурбинного двигателя морского применения, начало серийного производства которого запланировано на 2017 год. В области промышленного дизайна и быстрого прототипирования у российских специалистов есть передовые разработки, связанные со стрелковым оружием и аэрокосмической отраслью.

Это примеры успешного нахождения сфер для применения аддитивных технологий. Уже сейчас очевидно, что стопроцентной такой нишей станет медицина. Эндопротезы, биопринтинг, зубные мосты, ортопедия… Здесь аддитивные технологии уже переживают расцвет. В числе других потенциальных отраслей – инструментальная промышленность (производство инструментов и их шаблонов), космическая и авиационная сферы (легкие детали со сложной геометрией, компоненты турбин).

Аддитивные технологии связаны с поиском конкретных ниш, но и традиционная металлообработка не сдаст своих позиций в ближайшие годы. Важно не пропустить возможное изменение производственной парадигмы в тех отраслях, где мы традиционно сильны, а также искать новые сферы применения аддитивных технологий. Ведь ключевой вопрос заключается не в том, чтобы догнать и перегнать конкурентов, а в самой целесообразности этого забега и понимании того, на правильном ли треке мы находимся в конкретный момент.