Все об алюминии. Физические и химические свойства алюминия. Характеристика алюминия с точки зрения химии

Кусок чистого алюминия

Очень редкий минерал семейства меди-купалита подкласса металлов и интерметаллидов класса самородных элементов. Преимущественно в виде микроскопических выделений сплошного мелкозернистого строения. Может образовывать пластинчатые или чешуйчатые кристаллы до 1 мм., отмечены нитевидные кристаллы длиной до 0,5 мм. при толщине нитей несколько мкм. Лёгкий парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке.

Смотрите так же:

СТРУКТУРА

Кубическая гранецентрированная структура. 4 оранжевых атома

Кристаллическая решетка алюминия - гранецентрированный куб, которая устойчива при температуре от 4°К до точки плавления. В алюминии нет аллотропических превращений, т.е. его строение постоянно. Элементарная ячейка состоит из четырех атомов размером 4,049596×10 -10 м; при 25 °С атомный диаметр (кратчайшее расстояние между атомами в решетке) составляет 2,86×10 -10 м, а атомный объем 9,999×10 -6 м 3 /г-атом.
Примеси в алюминии незначительно влияют на величину параметра решетки. Алюминий обладает большой химической активностью, энергия образования его соединений с кислородом, серой и углеродом весьма велика. В ряду напряжений он находится среди наиболее электроотрицательных элементов, и его нормальный электродный потенциал равен -1,67 В. В обычных условиях, взаимодействуя с кислородом воздуха, алюминий покрыт тонкой (2-10 -5 см), но прочной пленкой оксида алюминия А1 2 0 3 , которая защищает от дальнейшего окисления, что обусловливает его высокую коррозионную стойкость. Однако при наличии в алюминии или окружающей среде Hg, Na, Mg, Ca, Si, Си и некоторых других элементов прочность оксидной пленки и ее защитные свойства резко снижаются.

СВОЙСТВА

Самородный алюминий. Поле зрения 5 x 4 мм. Азербайджан, Гобустанский район, Каспийское море, Хере-Зиря или остров Булла

Алюминий - мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью, парамагнетик. Температура плавления 660°C. К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см 3), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов. Он легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминий химически активен (на воздухе покрывается защитной оксидной пленкой — оксидом алюминия.) надежно предохраняет металл от дальнейшего окисления. Но если порошок алюминия или алюминиевую фольгу сильно нагреть, то металл сгорает ослепительным пламенем, превращаясь в оксид алюминия. Алюминий растворяется даже в разбавленных соляной и серной кислотах, особенно при нагревании. А вот в сильно разбавленной и концентрированной холодной азотной кислоте алюминий не растворяется. При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты — соли, содержащие алюминий в составе аниона.

ЗАПАСЫ И ДОБЫЧА

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре, по данным различных исследователей, оценивается от 7,45 до 8,14%.
Современный метод получения, процесс Холла-Эру был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al 2 O 3 в расплаве криолита Na 3 AlF 6 с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

ПРОИСХОЖДЕНИЕ

Аллюминий, агрегированный с коркой байерита на поверхности. Узбекистан, Навойская область, Учкудук

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико. Самые распространенные вещества, содержащие рассматриваемый металл: полевые шпаты; бокситы; граниты; кремнезем; алюмосиликаты; базальты и прочие. В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

ПРИМЕНЕНИЕ

Украшение из алюминия

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве - лёгкость, податливость штамповке, коррозионная стойкость. Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при напылении проводников на поверхности кристаллов микросхем.
Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г. были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Алюминий (англ. Aluminium) — Al

В земной коре алюминия очень много: 8,6% по массе. Он занимает первое место среди всех металлов и третье среди других элементов (после кислорода и кремния). Алюминия вдвое больше, чем железа, и в 350 раз больше, чем меди, цинка, хрома, олова и свинца вместе взятых! Как писал более 100 лет назад в своем классическом учебнике Основы химии Д.И.Менделеев , из всех металлов «алюминий есть самый распространенный в природе; достаточно указать на то, что он входит в состав глины, чтоб ясно было всеобщее распространение алюминия в коре земной. Алюминий, или металл квасцов (alumen), потому и называется иначе глинием, что находится в глине».

Важнейший минерал алюминия – боксит, смесь основного оксида AlO(OH) и гидроксида Al(OH) 3 . Крупнейшие месторождения боксита находятся в Австралии, Бразилии, Гвинее и на Ямайке; промышленная добыча ведется и в других странах. Богаты алюминием также алунит (квасцовый камень) (Na,K) 2 SO 4 ·Al 2 (SO 4) 3 ·4Al(OH) 3 , нефелин (Na,K) 2 O·Al 2 O 3 ·2SiO 2 . Всего же известно более 250 минералов, в состав которых входит алюминий; большинство из них – алюмосиликаты, из которых и образована в основном земная кора. При их выветривании образуется глина, основу которой составляет минерал каолинит Al 2 O 3 ·2SiO 2 ·2H 2 O. Примеси железа обычно окрашивают глину в бурый цвет, но встречаются и белая глина – каолин, которую применяют для изготовления фарфоровых и фаянсовых изделий.

Изредка встречается исключительно твердый (уступает лишь алмазу) минерал корунд – кристаллический оксид Al 2 O 3 , часто окрашенный примесями в разные цвета. Его синяя разновидность (примесь титана и железа) называется сапфиром, красная (примесь хрома) – рубином. Разные примеси могут окрашивать так называемый благородный корунд также в зеленый, желтый, оранжевый, фиолетовый и другие цвета и оттенки.

Еще недавно считалось, что алюминий как весьма активный металл не может встречаться в природе в свободном состоянии, однако в 1978 в породах Сибирской платформы был обнаружен самородный алюминий – в виде нитевидных кристаллов длиной всего 0,5 мм (при толщине нитей несколько микрометров). В лунном грунте, доставленном на Землю из районов морей Кризисов и Изобилия, также удалось обнаружить самородный алюминий. Предполагают, что металлический алюминий может образоваться конденсацией из газа. Известно, что при нагревании галогенидов алюминия – хлорида, бромида, фторида они могут с большей или меньшей легкостью испаряться (так, AlCl 3 возгоняется уже при 180° C). При сильном повышении температуры галогениды алюминия разлагаются, переходя в состояние с низшей валентностью металла, например, AlCl. Когда при понижении температуры и отсутствии кислорода такое соединение конденсируется, в твердой фазе происходит реакция диспропорционирования: часть атомов алюминия окисляется и переходит в привычное трехвалентное состояние, а часть – восстанавливается. Восстановиться же одновалентный алюминий может только до металла: 3AlCl ® 2Al + AlCl 3 . В пользу этого предположения говорит и нитевидная форма кристаллов самородного алюминия. Обычно кристаллы такого строения образуются вследствие быстрого роста из газовой фазы. Вероятно, микроскопические самородки алюминия в лунном грунте образовались аналогичным способом.

Название алюминия происходит от латинского alumen (род. падеж aluminis). Так называли квасцы, двойной сульфат калия-алюминия KAl(SO 4) 2 ·12H 2 O), которые использовали как протраву при крашении тканей. Латинское название, вероятно, восходит к греческому «халмэ» – рассол, соляной раствор. Любопытно, что в Англии алюминий – это aluminium, а в США – aluminum.

Во многих популярных книгах по химии приводится легенда о том, что некий изобретатель, имя которого история не сохранила, принес императору Тиберию, правившему Римом в 14–27 н.э., чашу из металла, напоминающего цветом серебро, но более легкого. Этот подарок стоил жизни мастеру: Тиберий приказал казнить его, а мастерскую уничтожить, поскольку боялся, что новый металл может обесценить серебро в императорской сокровищнице.

Эта легенда основана на рассказе Плиния Старшего , римского писателя и ученого, автора Естественной истории – энциклопедии естественнонаучных знаний античных времен. Согласно Плинию, новый металл был получен из «глинистой земли». А ведь глина действительно содержит алюминий.

Современные авторы почти всегда делают оговорку, что вся эта история – не более чем красивая сказка. И это не удивительно: алюминий в горных породах чрезвычайно прочно связан с кислородом, и для его выделения необходимо затратить очень много энергии. Однако в последнее время появились новые данные о принципиальной возможности получения металлического алюминия в древности. Как показал спектральный анализ, украшения на гробнице китайского полководца Чжоу-Чжу, умершего в начале III в. н.э., сделаны из сплава, на 85% состоящего из алюминия. Могли ли древние получить свободный алюминий? Все известные способы (электролиз, восстановление металлическим натрием или калием) отпадают автоматически. Могли ли в древности найти самородный алюминий, как, например, самородки золота, серебра, меди? Это тоже исключено: самородный алюминий – редчайший минерал, который встречается в ничтожных количествах, так что древние мастера никак не могли найти и собрать в нужном количестве такие самородки.

Однако возможно и другое объяснение рассказа Плиния. Алюминий можно восстановить из руд не только с помощью электричества и щелочных металлов. Существует доступный и широко используемый с древних времен восстановитель – это уголь, с помощью которого оксиды многих металлов при нагревании восстанавливаются до свободных металлов. В конце 1970-х немецкие химики решили проверить, могли ли в древности получить алюминий восстановлением углем. Они нагрели в глиняном тигле до красного каления смесь глины с угольным порошком и поваренной солью или поташом (карбонатом калия). Соль была получена из морской воды, а поташ – из золы растений, чтобы использовать только те вещества и методы, которые были доступны в древности. Через некоторое время на поверхности тигля всплыл шлак с шариками алюминия! Выход металла был мал, но не исключено, что именно этим путем древние металлурги могли получить «металл 20 века».

Свойства алюминия.

По цвету чистый алюминий напоминает серебро, это очень легкий металл: его плотность всего 2,7 г/см 3 . Легче алюминия только щелочные и щелочноземельные металлы (кроме бария), бериллий и магний. Плавится алюминий тоже легко – при 600° С (тонкую алюминиевую проволоку можно расплавить на обычной кухонной конфорке), зато кипит лишь при 2452° С. По электропроводности алюминий – на 4-м месте, уступая лишь серебру (оно на первом месте), меди и золоту, что при дешевизне алюминия имеет огромное практическое значение. В таком же порядке изменяется и теплопроводность металлов. В высокой теплопроводности алюминия легко убедиться, опустив алюминиевую ложечку в горячий чай. И еще одно замечательное свойство у этого металла: его ровная блестящая поверхность прекрасно отражает свет: от 80 до 93% в видимой области спектра в зависимости от длины волны. В ультрафиолетовой области алюминию в этом отношении вообще нет равных, и лишь в красной области он немного уступает серебру (в ультрафиолете серебро имеет очень низкую отражательную способность).

Чистый алюминий – довольно мягкий металл – почти втрое мягче меди, поэтому даже сравнительно толстые алюминиевые пластинки и стержни легко согнуть, но когда алюминий образует сплавы (их известно огромное множество), его твердость может возрасти в десятки раз.

Характерная степень окисления алюминия +3, но благодаря наличию незаполненных 3р - и 3d -орбиталей атомы алюминия могут образовывать дополнительные донорно-акцепторные связи. Поэтому ион Al 3+ с небольшим радиусом весьма склонен к комплексообразованию, образуя разнообразные катионные и анионные комплексы: AlCl 4 – , AlF 6 3– , 3+ , Al(OH) 4 – , Al(OH) 6 3– , AlH 4 – и многие другие. Известны комплексы и с органическими соединениями.

Химическая активность алюминия весьма высока; в ряду электродных потенциалов он стоит сразу за магнием. На первый взгляд такое утверждение может показаться странным: ведь алюминиевая кастрюля или ложка вполне устойчивы на воздухе, не разрушаются и в кипящей воде. Алюминий, в отличие от железа, не ржавеет. Оказывается, на воздухе металл покрывается бесцветной тонкой, но прочной «броней» из оксида, которая защищает металл от окисления. Так, если внести в пламя горелки толстую алюминиевую проволоку или пластинку толщиной 0,5–1 мм, то металл плавится, но алюминий не течет, так как остается в мешочке из его оксида. Если лишить алюминий защитной пленки или сделать ее рыхлой (например, погружением в раствор ртутных солей), алюминий тут же проявит свою истинную сущность: уже при комнатной температуре начнет энергично реагировать с водой с выделением водорода: 2Al + 6H 2 O ® 2Al(OH) 3 + 3H 2 . На воздухе лишенный защитной пленки алюминий прямо на глазах превращается в рыхлый порошок оксида: 2Al + 3O 2 ® 2Al 2 O 3 . Особенно активен алюминий в мелкораздробленном состоянии; алюминиевая пыль при вдувании в пламя моментально сгорает. Если смешать на керамической пластинке алюминиевую пыль с пероксидом натрия и капнуть на смесь водой, алюминий также вспыхивает и сгорает белым пламенем.

Очень высокое сродство алюминия к кислороду позволяет ему «отнимать» кислород от оксидов ряда других металлов, восстанавливая их (метод алюминотермии). Самый известный пример – термитная смесь, при горении которой выделяется так много тепла, что полученное железо расплавляется: 8Al + 3Fe 3 O 4 ® 4Al 2 O 3 + 9Fe. Эта реакция была открыта в 1856 Н.Н.Бекетовым. Таким способом можно восстановить до металлов Fe 2 O 3 , CoO, NiO, MoO 3 , V 2 O 5 , SnO 2 , CuO, ряд других оксидов. При восстановлении же алюминием Cr 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , TiO 2 , ZrO 2 , B 2 O 3 теплоты реакции недостаточно для нагрева продуктов реакции выше их температуры плавления.

Алюминий легко растворяется в разбавленных минеральных кислотах с образованием солей. Концентрированная азотная кислота, окисляя поверхность алюминия, способствует утолщению и упрочнению оксидной пленки (так называемая пассивация металла). Обработанный таким образом алюминий не реагирует даже с соляной кислотой. С помощью электрохимического анодного окисления (анодирования) на поверхности алюминия можно создать толстую пленку, которую нетрудно окрасить в разные цвета.

Вытеснение алюминием из растворов солей менее активных металлов часто затруднено защитной пленкой на поверхности алюминия. Эта пленка быстро разрушается хлоридом меди, поэтому легко идет реакция 3CuCl 2 + 2Al ® 2AlCl 3 + 3Cu, которая сопровождается сильным разогревом. В крепких растворах щелочей алюминий легко растворяется с выделением водорода: 2Al + 6NaOH + 6Н 2 О ® 2Na 3 + 3H 2 (образуются и другие анионные гидроксо-комплексы). Амфотерный характер соединений алюминия проявляется также в легком растворении в щелочах его свежеосажденного оксида и гидроксида. Кристаллический оксид (корунд) весьма устойчив к действию кислот и щелочей. При сплавлении со щелочами образуются безводные алюминаты: Al 2 O 3 + 2NaOH ® 2NaAlO 2 + H 2 O. Алюминат магния Mg(AlO 2) 2 – полудрагоценный камень шпинель, обычно окрашенный примесями в самые разнообразные цвета.

Бурно протекает реакция алюминия с галогенами. Если в пробирку с 1 мл брома внести тонкую алюминиевую проволоку, то через короткое время алюминий загорается и горит ярким пламенем. Реакция смеси порошков алюминия и иода инициируется каплей воды (вода с иодом образует кислоту, которая разрушает оксидную пленку), после чего появляется яркое пламя с клубами фиолетовых паров иода. Галогениды алюминия в водных растворах имеют кислую реакцию из-за гидролиза: AlCl 3 + H 2 O Al(OH)Cl 2 + HCl.

Реакция алюминия с азотом идет только выше 800° С с образованием нитрида AlN, с серой – при 200° С (образуется сульфид Al 2 S 3), с фосфором – при 500° С (образуется фосфид AlP). При внесении в расплавленный алюминий бора образуются бориды состава AlB 2 и AlB 12 – тугоплавкие соединения, устойчивые к действию кислот. Гидрид (AlH) х (х = 1,2) образуется только в вакууме при низких температурах в реакции атомарного водорода с парами алюминия. Устойчивый в отсутствие влаги при комнатной температуре гидрид AlH 3 получают в растворе безводного эфира: AlCl 3 + LiH ® AlH 3 + 3LiCl. При избытке LiH образуется солеобразный алюмогидрид лития LiAlH 4 – очень сильный восстановитель, применяющийся в органических синтезах. Водой он мгновенно разлагается: LiAlH 4 + 4H 2 O ® LiOH + Al(OH) 3 + 4H 2 .

Получение алюминия.

Документально зафиксированное открытие алюминия произошло в 1825. Впервые этот металл получил датский физик Ганс Христиан Эрстед , когда выделил его при действии амальгамы калия на безводный хлорид алюминия (полученный при пропускании хлора через раскаленную смесь оксида алюминия с углем). Отогнав ртуть, Эрстед получил алюминий, правда, загрязненный примесями. В 1827 немецкий химик Фридрих Вёлер получил алюминий в виде порошка восстановлением гексафторалюмината калием:

Na 3 AlF 6 + 3K ® Al + 3NaF + 3KF. Позднее ему удалось получить алюминий в виде блестящих металлических шариков. В 1854 французский химик Анри Этьен Сент-Клер Девилль разработал первый промышленный способ получения алюминия – восстановлением расплава тетрахлоралюминиата натрием: NaAlCl 4 + 3Na ® Al + 4NaCl. Тем не менее, алюминий продолжал оставаться чрезвычайно редким и дорогим металлом; он стоил ненамного дешевле золота и в 1500 раз дороже железа (сейчас – только втрое). Из золота, алюминия и драгоценных камней была сделана в 1850-х погремушка для сына французского императора Наполеона III . Когда в 1855 на Всемирной выставке в Париже был выставлен большой слиток алюминия, полученный новым способом, на него смотрели, как на драгоценность. Из драгоценного алюминия сделали верхнюю часть (в виде пирамидки) памятника Вашингтону в столице США. В то время алюминий был ненамного дешевле серебра: в США, например, в 1856 он продавался по цене 12 долл. за фунт (454 г), а серебро – по 15 долл. В изданном в 1890 1-м томе знаменитого Энциклопедического словаря Брокгауза и Ефрона говорилось, что «алюминий до сих пор служит преимущественно для выделки... предметов роскоши». К тому времени во всем мире ежегодно добывалось всего 2,5 т. металла. Лишь к концу 19 в., когда был разработан электролитический способ получения алюминия, его ежегодное производство начало исчисляться тысячами тонн, а в 20 в. – млн. тонн. Это сделало алюминий из полудрагоценного широко доступным металлом.

Современный способ получения алюминия был открыт в 1886 молодым американским исследователем Чарлзом Мартином Холлом . Химией он увлекся еще в детстве. Найдя старый учебник химии своего отца, он начал усердно штудировать его, а также ставить опыты, однажды даже получил нагоняй от матери за порчу обеденной скатерти. А спустя 10 лет он сделал выдающееся открытие, прославившее его на весь мир.

Став в 16 лет студентом, Холл услышал от своего преподавателя, Ф.Ф.Джуэтта, что если кому-нибудь удастся разработать дешевый способ получения алюминия, то этот человек не только окажет огромную услугу человечеству, но и заработает огромное состояние. Джуэтт знал, что говорил: ранее он стажировался в Германии, работал у Вёлера, обсуждал с ним проблемы получения алюминия. С собой в Америку Джуэтт привез и образец редкого металла, который показал ученикам. Неожиданно Холл заявил во всеуслышание: «Я получу этот металл!»

Шесть лет продолжалась упорная работа. Холл пытался получать алюминий разными методами, но безуспешно. Наконец, он попробовал извлечь этот металл электролизом. В то время электростанций не было, ток приходилось получать с помощью больших самодельных батарей из угля, цинка, азотной и серной кислот. Холл работал в сарае, где устроил маленькую лабораторию. Ему помогала сестра Джулия, которая очень интересовалась опытами брата. Она сохранила все его письма и рабочие журналы, которые позволяют буквально по дням проследить историю открытия. Вот выдержка из ее воспоминаний:

«Чарлз всегда был в хорошем настроении, и даже в самые плохие дни был способен посмеяться над судьбой незадачливых изобретателей. В часы неудач он находил утешение за нашим стареньким пианино. В своей домашней лаборатории он работал по-многу часов без перерыва; а когда он мог ненадолго оставить установку, то мчался через весь наш длинный дом, чтобы немного поиграть... Я знала, что, играя с таким обаянием и чувством, он постоянно думает о своей работе. И музыка ему в этом помогала.»

Самым трудным было подобрать электролит и защитить алюминий от окисления. Через шесть месяцев изнурительного труда в тигле, наконец, появилось несколько маленьких серебристых шариков. Холл немедленно побежал к своему бывшему преподавателю, чтобы рассказать об успехе. «Профессор, я получил его!», – воскликнул он, протягивая руку: на ладони лежал десяток маленьких алюминиевых шариков. Это произошло 23 февраля 1886. А спустя ровно два месяца, 23 апреля того же года, француз Поль Эру взял патент на аналогичное изобретение, которое он сделал независимо и почти одновременно (поразительны и два других совпадения: и Холл, и Эру родились в 1863 и умерли в 1914).

Сейчас первые шарики алюминия, полученные Холлом, хранятся в Американской Алюминиевой компании в Питтсбурге как национальная реликвия, а в его колледже стоит памятник Холлу, отлитый из алюминия. Впоследствии Джуэтт писал: «Моим самым важным открытием было открытие человека. Это был Чарлз М.Холл, который в возрасте 21 года открыл способ восстановления алюминия из руды, и таким образом сделал алюминий тем замечательным металлом, которым теперь широко пользуются во всем мире». Пророчество Джуэтта сбылось: Холл получил широкое признание, стал почетным членом многих научных обществ. Но личная жизнь ему не удалась: невеста не хотела смириться с тем, что ее жених все время проводит в лаборатории, и расторгла помолвку. Холл нашел утешение в родном колледже, где он проработал до конца жизни. Как писал брат Чарлза, «колледж был для него и женой, и детьми, и всем остальным – всю его жизнь». Колледжу Холл завещал и б?льшую часть своего наследства – 5 млн. долл. Умер Холл от лейкемии в возрасте 51 года.

Метод Холла позволил получать с помощью электричества сравнительно недорогой алюминий в больших масштабах. Если с 1855 до 1890 было получено лишь 200 тонн алюминия, то за следующее десятилетие по методу Холла во всем мире получили уже 28 000 т этого металла! К 1930 мировое ежегодное производство алюминия достигло 300 тыс. тонн. Сейчас же ежегодно получают более 15 млн. т. алюминия. В специальных ваннах при температуре 960–970° С подвергают электролизу раствор глинозема (технический Al 2 O 3) в расплавленном криолите Na 3 AlF 6 , который частично добывают в виде минерала, а частично специально синтезируют. Жидкий алюминий накапливается на дне ванны (катод), кислород выделяется на угольных анодах, которые постепенно обгорают. При низком напряжении (около 4,5 В) электролизеры потребляют огромные токи – до 250 000 А! За сутки один электролизер дает около тонны алюминия. Производство требует больших затрат электроэнергии: на получение 1 тонны металла затрачивается 15000 киловатт-часов электроэнергии. Такое количество электричества потребляет большой 150-квартирный дом в течение целого месяца. Производство алюминия экологически опасно, так как атмосферный воздух загрязняется летучими соединениями фтора.

Применение алюминия.

Еще Д.И.Менделеев писал, что «металлический алюминий, обладая большою легкостью и прочностью и малою изменчивостью на воздухе, очень пригоден для некоторых изделий». Алюминий – один из самых распространенных и дешевых металлов. Без него трудно представить себе современную жизнь. Недаром алюминий называют металлом 20 века. Он хорошо поддается обработке: ковке, штамповке, прокату, волочению, прессованию. Чистый алюминий – довольно мягкий металл; из него делают электрические провода, детали конструкций, фольгу для пищевых продуктов, кухонную утварь и «серебряную» краску. Этот красивый и легкий металл широко используют в строительстве и авиационной технике. Алюминий очень хорошо отражает свет. Поэтому его используют для изготовления зеркал – методом напыления металла в вакууме.

В авиа- и машиностроении, при изготовлении строительных конструкций, используют значительно более твердые сплавы алюминия. Один из самых известных – сплав алюминия с медью и магнием (дуралюмин, или просто «дюраль»; название происходит от немецкого города Дюрена). Этот сплав после закалки приобретает особую твёрдость и становится примерно в 7 раз прочнее чистого алюминия. В то же время он почти втрое легче железа. Его получают, сплавляя алюминий с небольшими добавками меди, магния, марганца, кремния и железа. Широко распространены силумины – литейные сплавы алюминия с кремнием. Производятся также высокопрочные, криогенные (устойчивые к морозам) и жаропрочные сплавы. На изделия из алюминиевых сплавов легко наносятся защитные и декоративные покрытия. Легкость и прочность алюминиевых сплавов особенно пригодились в авиационной технике. Например, из сплава алюминия, магния и кремния делают винты вертолетов. Сравнительно дешевая алюминиевая бронза (до 11% Al) обладает высокими механическими свойствами, она устойчива в морской воде и даже в разбавленной соляной кислоте. Из алюминиевой бронзы в СССР с 1926 по 1957 чеканились монеты достоинством 1, 2, 3 и 5 копеек.

В настоящее время четвертая часть всего алюминия идет на нужды строительства, столько же потребляет транспортное машиностроение, примерно 17% часть расходуется на упаковочные материалы и консервные банки, 10% – в электротехнике.

Алюминий содержат также многие горючие и взрывчатые смеси. Алюмотол, литая смесь тринитротолуола с порошком алюминия, – одно из самых мощных промышленных взрывчатых веществ. Аммонал – взрывчатое вещество, состоящее из аммиачной селитры, тринитротолуола и порошка алюминия. Зажигательные составы содержат алюминий и окислитель – нитрат, перхлорат. Пиротехнические составы «Звездочки» также содержат порошкообразный алюминий.

Смесь порошка алюминия с оксидами металлов (термит) применяют для получения некоторых металлов и сплавов, для сварки рельсов, в зажигательных боеприпасах.

Алюминий нашел также практическое применение в качестве ракетного топлива. Для полного сжигания 1 кг алюминия требуется почти вчетверо меньше кислорода, чем для 1 кг керосина. Кроме того, алюминий может окисляться не только свободным кислородом, но и связанным, входящим в состав воды или углекислого газа. При «сгорании» алюминия в воде на 1 кг продуктов выделяется 8800 кДж; это в 1,8 раза меньше, чем при сгорании металла в чистом кислороде, но в 1,3 раза больше, чем при сгорании на воздухе. Значит, в качестве окислителя такого топлива можно использовать вместо опасных и дорогостоящих соединений простую воду. Идею использования алюминия в качестве горючего еще в 1924 предложил отечественный ученый и изобретатель Ф.А.Цандер. По его замыслу можно использовать алюминиевые элементы космического корабля в качестве дополнительного горючего. Этот смелый проект пока практически не осуществлен, зато большинство известных в настоящее время твердых ракетных топлив содержат металлический алюминий в виде тонкоизмельченного порошка. Добавление 15% алюминия к топливу может на тысячу градусов повысить температуру продуктов сгорания (с 2200 до 3200 К); заметно возрастает и скорость истечения продуктов сгорания из сопла двигателя – главный энергетический показатель, определяющий эффективность ракетного топлива. В этом плане конкуренцию алюминию могут составить только литий, бериллий и магний, но все они значительно дороже алюминия.

Широкое применение находят и соединения алюминия. Оксид алюминия – огнеупорный и абразивный (наждак) материал, сырье для получения керамики. Из него также делают лазерные материалы, подшипники для часов, ювелирные камни (искусственные рубины). Прокаленный оксид алюминия – адсорбент для очистки газов и жидкостей и катализатор ряда органических реакций. Безводный хлорид алюминия – катализатор в органическом синтезе (реакция Фриделя – Крафтса), исходное вещество для получения алюминия высокой чистоты. Сульфат алюминия применяют для очистки воды; реагируя с содержащимся в ней гидрокарбонатом кальция:

Al 2 (SO 4) 3 + 3Ca(HCO 3) 2 ® 2AlO(OH) + 3CaSO 4 + 6CO 2 + 2H 2 O, он образует хлопья оксида-гидроксида, которые, оседая, захватывают, а также сорбируют на поверхности находящиеся в воде взвешенные примеси и даже микроорганизмы. Кроме того, сульфат алюминия применяют как протраву при крашении тканей, для дубления кожи, консервирования древесины, проклеивания бумаги. Алюминат кальция – компонент вяжущих материалов, в том числе портландцемента. Иттрий-алюминиевый гранат (ИАГ) YAlO 3 – лазерный материал. Нитрид алюминия – огнеупорный материал для электропечей. Синтетические цеолиты (они относятся к алюмосиликатам) – адсорбенты в хроматографии и катализаторы. Алюминийорганические соединения (например, триэтилалюминий) – компоненты катализаторов Циглера – Натты, которые используются для синтеза полимеров, в том числе синтетического каучука высокого качества.

Илья Леенсон

Литература:

Тихонов В.Н. Аналитическая химия алюминия . М., «Наука», 1971
Популярная библиотека химических элементов . М., «Наука», 1983
Craig N.C. Charles Martin Hall and his Metall. J.Chem.Educ . 1986, vol. 63, № 7
Kumar V., Milewski L. Charles Martin Hall and the Great Aluminium Revolution . J.Chem.Educ., 1987, vol. 64, № 8



(А l ), галлий (Ga ), индий (In ) и таллий (Т l ).

Как видно из приведенных данных, все эти элементы были открыты в XIX столетии.

Открытие металлов главной подгруппы III группы

В

Al

Ga

In

Tl

1806 г.

1825 г.

1875 г.

1863 г.

1861 г.

Г.Люссак,

Г.Х.Эрстед

Л. де Буабодран

Ф.Рейх,

У.Крукс

Л. Тенар

(Дания)

(Франция)

И.Рихтер

(Англия)

(Франция)



(Германия)


Бор представляет собой неметалл. Алюминий - переход­ный металл, а галлий, индий и таллий - полноценные метал­лы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свой­ства простых веществ усиливаются.

В данной лекции мы подробнее рассмотрим свойства алюминия.

1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная масса Ar (Al ) = 27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al +13) 2) 8) 3 , p – элемент,

Основное состояние

1s 2 2s 2 2p 6 3s 2 3p 1

Возбуждённое состояние

1s 2 2s 2 2p 6 3s 1 3p 2

Алюминий проявляет в соединениях степень окисления +3:

Al 0 – 3 e - → Al +3

2. Физические свойства

Алюминий в свободном виде - се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Температура плавления650 о С. Алюминий имеет невысокую плотность (2,7 г/см 3) - при­мерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов , уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах).

Некоторые из них:

· Бокситы - Al 2 O 3 H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3)

· Нефелины - KNa 3 4

· Алуниты - KAl(SO 4) 2 2Al(OH) 3

· Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3)

· Корунд - Al 2 O 3

· Полевой шпат (ортоклаз) - K 2 O×Al 2 O 3 ×6SiO 2

· Каолинит - Al 2 O 3 ×2SiO 2 × 2H 2 O

· Алунит - (Na,K) 2 SO 4 ×Al 2 (SO 4) 3 ×4Al(OH) 3

· Берилл - 3ВеО Al 2 О 3 6SiO 2

Боксит

Al 2 O 3

Корунд

Рубин

Сапфир

4. Химические свойства алюминия и его соединений

Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид).

ДЕМОНСТРАЦИЯ ОКСИДНОЙ ПЛЁНКИ

Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изученияхимических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия со ртутью – амальгамы).

I . Взаимодействие с простыми веществами

Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С), с йодом в присутствии катализатора - воды:

2А l + 3 S = А l 2 S 3 (сульфид алюминия),

2А l + N 2 = 2А lN (нитрид алюминия),

А l + Р = А l Р (фосфид алюминия),

4А l + 3С = А l 4 С 3 (карбид алюминия).

2 Аl +3 I 2 =2 A l I 3 (йодид алюминия) ОПЫТ

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S­

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4 ­

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

4А l + 3 O 2 = 2А l 2 О 3 + 1676 кДж.

ГОРЕНИЕ АЛЮМИНИЯ НА ВОЗДУХЕ

ОПЫТ

II . Взаимодействие со сложными веществами

Взаимодействие с водой :

2 Al + 6 H 2 O=2 Al (OH) 3 +3 H 2

без оксидной пленки

ОПЫТ

Взаимодействие с оксидами металлов:

Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов . Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.

3 Fe 3 O 4 +8 Al =4 Al 2 O 3 +9 Fe + Q

Термитная смесь Fe 3 O 4 иAl (порошок) –используется ещё и в термитной сварке.

С r 2 О 3 + 2А l = 2С r + А l 2 О 3

Взаимодействие с кислотами :

С раствором серной кислоты:2 Al+ 3 H 2 SO 4 =Al 2 (SO 4) 3 +3 H 2

С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2А l + 6Н 2 S О 4(конц) = А l 2 (S О 4) 3 + 3 S О 2 + 6Н 2 О,

А l + 6Н NO 3(конц) = А l (NO 3 ) 3 + 3 NO 2 + 3Н 2 О.

Взаимодействие со щелочами .

2 Al + 2 NaOH + 6 H 2 O =2 Na [ Al (OH ) 4 ] +3 H 2

ОПЫТ

Na l (ОН) 4 ]тетрагидроксоалюминат натрия

По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов.

С растворами солей:

2 Al + 3 CuSO 4 = Al 2 (SO 4 ) 3 + 3 Cu

Если поверхность алюминия потереть солью ртути, то происходит реакция:

2 Al + 3 HgCl 2 = 2 AlCl 3 + 3 Hg

Выделившаяся ртуть растворяет алюминий, образуяамальгаму .

Обнаружение ионов алюминия в растворах : ОПЫТ


5. Применение алюминия и его соединений

Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминияявляется авиационная промышленность : самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода : при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты . Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражениятепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сок.

Соли алюминия сильногидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na 3 AlF 6 растворяет Al 2 O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия - электролитом.

2Al 2 O 3 эл.ток →4Al + 3O 2

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

2) 2Al 2 O 3 +3 C=4 Al+3 CO 2

ЭТО ИНТЕРЕСНО:

  • Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием.
  • В 18-19 веках алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за заслуги в развитии химии был награжден ценным подарком – весами, сделанными из золота и алюминия.
  • К 1855 году французский ученыйСен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством НаполеонаIII, императораФранции. В знаксвоей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами.
  • А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы.При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка.
  • При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер.

ТРЕНАЖЁРЫ

Тренажёр №1 - Характеристика алюминия по положению в Периодической системе элементов Д. И. Менделеева

Тренажёр №2 - Уравнения реакций алюминия с простыми и сложными веществами

Тренажёр №3 - Химические свойства алюминия

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?

№2. Закончите уравнения химических реакций :
Al + H 2 SO 4 (раствор ) ->
Al + CuCl 2 ->
Al + HNO 3 (
конц ) - t ->
Al + NaOH + H 2 O ->

№3. Осуществите превращения:
Al -> AlCl 3 -> Al -> Al 2 S 3 -> Al(OH) 3 - t ->Al 2 O 3 -> Al

№4. Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите процентный состав сплава, если его общая масса была 10 г?

Каждый химический элемент можно рассмотреть с точки зрения трех наук: физики, химии и биологии. И в этой статье мы постараемся как можно точнее дать характеристику алюминию. Это химический элемент, находящийся в третьей группе и третьем периоде, согласно таблице Менделеева. Алюминий - металл, который обладает средней химической активностью. Также в его соединениях можно наблюдать амфотерные свойства. Атомная масса алюминия составляет двадцать шесть грамм на моль.

Физическая характеристика алюминия

При нормальных условиях он представляет собой твердое вещество. Формула алюминия очень проста. Он состоит из атомов (не объединятся в молекулы), которые выстроены с помощью кристаллической решетки в сплошное вещество. Цвет алюминия - серебристо-белый. Кроме того, он обладает металлическим блеском, как и все другие вещества данной группы. Цвет алюминия, используемого в промышленности, может быть различным в связи с присутствием в сплаве примесей. Это достаточно легкий металл.

Его плотность равняется 2,7 г/см3, то есть он приблизительно в три раза легче, чем железо. В этом он может уступить разве что магнию, который еще легче рассматриваемого металла. Твердость алюминия довольно низкая. В ней он уступает большинству металлов. Твердость алюминия составляет всего два по Поэтому для ее усиления в сплавы на основе данного металла добавляют более твердые.

Плавление алюминия происходит при температуре всего в 660 градусов по шкале Цельсия. А закипает он при нагревании до температуры две тысячи четыреста пятьдесят два градуса по Цельсию. Это очень пластичный и легкоплавкий металл. На этом физическая характеристика алюминия не заканчивается. Еще хотелось бы отметить, что данный металл обладает самой лучшей после меди и серебра электропроводностью.

Распространенность в природе

Алюминий, технические характеристики которого мы только что рассмотрели, достаточно часто встречается в окружающей среде. Его можно наблюдать в составе многих минералов. Элемент алюминий - четвертый среди всех по распространенности в природе. Его в земной коре составляет почти девять процентов. Основные минералы, в составе которых присутствуют его атомы, это боксит, корунд, криолит. Первый - это горная порода, которая состоит из оксидов железа, кремния и рассматриваемого металла, также в структуре присутствуют молекулы воды. Он имеет неоднородную окраску: фрагменты серого, красновато-коричневого и других цветов, которые зависят от наличия различных примесей. От тридцати до шестидесяти процентов данной породы - алюминий, фото которого можно увидеть выше. Кроме того, очень распространенным в природе минералом является корунд.

Это оксид алюминия. Его химическая формула - Al2O3. Он может обладать красным, желтым, голубым либо коричневым цветом. Его твердость по шкале Мооса составляет девять единиц. К разновидностям корунда относятся всем известные сапфиры и рубины, лейкосапфиры, а также падпараджа (желтый сапфир).

Криолит - это минерал, имеющий более сложную химическую формулу. Он состоит из фторидов алюминия и натрия - AlF3.3NaF. Выглядит как бесцветный или сероватый камень, обладающий низкой твердостью - всего три по шкале Мооса. В современном мире его синтезируют искусственно в лабораторных условиях. Он применяется в металлургии.

Также алюминий можно встретить в природе в составе глин, основным компонентов которых являются оксиды кремния и рассматриваемого металла, связанные с молекулами воды. Кроме того, данный химический элемент можно наблюдать в составе нефелинов, химическая формула которых выглядит следующим образом: KNa34.

Получение

Характеристика алюминия предусматривает рассмотрение способов его синтеза. Существует несколько методов. Производство алюминия первым способом происходит в три этапа. Последним из них является процедура электролиза на катоде и угольном аноде. Для проведения подобного процесса необходим оксид алюминия, а также такие вспомогательные вещества, как криолит (формула - Na3AlF6) и фторид кальция (CaF2). Для того чтобы произошел процесс разложения растворенного в воде оксида алюминия, нужно его вместе с расплавленным криолитом и кальция фторидом нагреть до температуры минимум в девятьсот пятьдесят градусов по шкале Цельсия, а затем пропустить сквозь эти вещества ток силой в восемьдесят тысяч ампер и напряжением в пять-восемь вольт. Таким образом, вследствие данного процесса на катоде осядет алюминий, а на аноде будут собираться молекулы кислорода, которые, в свою очередь, окисляют анод и превращают его в углекислый газ. Перед проведением данной процедуры боксит, в виде которого добывается алюминия оксид, предварительно очищается от примесей, а также проходит процесс его обезвоживания.

Производство алюминия способом, описанным выше, является очень распространенным в металлургии. Также существует метод, изобретенный в 1827 году Ф. Велером. Он заключается в том, что алюминий можно добыть с помощью химической реакции между его хлоридом и калием. Осуществить подобный процесс можно, только создав специальные условия в виде очень высокой температуры и вакуума. Так, из одного моль хлорида и такого же объема калия можно получить один моль алюминия и три моль как побочного продукта. Данную реакцию можно записать в виде такого уравнения: АІСІ3 + 3К = АІ + 3КСІ. Указанный метод не приобрел большой популярности в металлургии.

Характеристика алюминия с точки зрения химии

Как уже было сказано выше, это простое вещество, которое состоит из атомов, не объединенных в молекулы. Подобные структуры формируют почти все металлы. Алюминий обладает достаточно высокой химической активностью и сильными восстановительными свойствами. Химическая характеристика алюминия начнется с описания его реакций с другими простыми веществами, а далее будут описаны взаимодействия со сложными неорганическими соединениями.

Алюминий и простые вещества

К таковым относится, в первую очередь, кислород - самое распространенное соединение на планете. Из него на двадцать один процент состоит атмосфера Земли. Реакции данного вещества с любыми другими называются окислением, или горением. Оно обычно происходит при высоких температурах. Но в случае с алюминием возможно окисление в нормальных условиях - так образуется пленка оксида. Если же данный металл измельчить, он будет гореть, выделяя при этом большое количество энергии в виде тепла. Для проведения реакции между алюминием и кислородом нужны эти компоненты в молярном соотношении 4:3, в результате чего получим две части оксида.

Данное химическое взаимодействие выражается в виде следующего уравнения: 4АІ + 3О2 = 2АІО3. Также возможны реакции алюминия с галогенами, к которым относятся фтор, йод, бром и хлор. Названия данных процессов происходят от названий соответствующих галогенов: фторирование, йодирование, бромирование и хлорирование. Это типичные реакции присоединения.

Для примера приведем взаимодействие алюминия с хлором. Такого рода процесс может произойти только на холоде.

Так, взяв два моль алюминия и три моль хлора, получим в результате два моль хлорида рассматриваемого металла. Уравнение этой реакции выглядит следующим образом: 2АІ + 3СІ = 2АІСІ3. Таким же способом можно получить фторид алюминия, его бромид и йодид.

С серой рассматриваемое вещество реагирует только при нагревании. Для проведения взаимодействия между этими двумя соединениями нужно взять их в молярных пропорциях два к трем, и образуется одна часть сульфида алюминия. Уравнение реакции имеет такой вид: 2Al + 3S = Al2S3.

Кроме того, при высоких температурах алюминий взаимодействует и с карбоном, образуя карбид, и с азотом, образуя нитрид. Можно привести в пример следующие уравнения химических реакций: 4АІ + 3С = АІ4С3; 2Al + N2 = 2AlN.

Взаимодействие со сложными веществами

К ним относятся вода, соли, кислоты, основания, оксиды. Со всеми этими химическими соединениями алюминий реагирует по-разному. Давайте разберем подробнее каждый случай.

Реакция с водой

С самым распространенным на Земле сложным веществом алюминий взаимодействует при нагревании. Происходит это только в случае предварительного снятия пленки из оксида. В результате взаимодействия образуется амфотерный гидроксид, а также в воздух выделяется водород. Взяв две части алюминия и шесть частей воды, получим гидроксид и водород в молярных пропорциях два к трем. Записывается уравнение этой реакции так: 2АІ + 6Н2О = 2АІ(ОН)3 + 3Н2.

Взаимодействие с кислотами, основаниями и оксидами

Как и другие активные металлы, алюминий способен вступать в реакцию замещения. При этом он может вытеснить водород из кислоты либо катион более пассивного металла из его соли. В результате таких взаимодействий образуется соль алюминия, а также выделяется водород (в случае с кислотой) либо выпадает в осадок чистый металл (тот, который менее активен, чем рассматриваемый). Во втором случае и проявляются восстановительные свойства, которые упоминались выше. В пример можно привести взаимодействие алюминия с при котором образуется хлорид алюминия и выделяется в воздух водород. Подобного рода реакция выражается в виде следующего уравнения: 2АІ + 6НСІ = 2АІСІ3 + 3Н2.

Примером взаимодействия алюминия с солью может служить его реакция с Взяв эти два компонента, в итоге мы получим и чистую медь, которая выпадет в виде осадка. С такими кислотами, как серная и азотная, алюминий реагирует своеобразно. К примеру, при добавлении алюминия в разбавленный раствор нитратной кислоты в молярном соотношении восемь частей к тридцати образуется восемь частей нитрата рассматриваемого металла, три части оксида азота и пятнадцать - воды. Уравнение данной реакции записывают таким образом: 8Al + 30HNO3 = 8Al(NO3)3 + 3N2O + 15H2O. Указанный процесс происходит только при наличии высокой температуры.

Если же смешать алюминий и слабый раствор сульфатной кислоты в молярных пропорциях два к трем, то получим сульфат рассматриваемого металла и водород в соотношении один к трем. То есть произойдет обыкновенная реакция замещения, как и в случае с другими кислотами. Для наглядности приведем уравнение: 2Al + 3H2SO4 = Al2(SO4)3 + 3H2. Однако с концентрированным раствором этой же кислоты все сложнее. Здесь так же, как и в случае с нитратной, образуется побочный продукт, но уже не в виде оксида, а в виде серы, и вода. Если мы возьмем два необходимых нам компонента в молярном соотношении два к четырем, то в результате получим по одной части соли рассматриваемого металла и серы, а также четыре - воды. Данное химическое взаимодействие можно выразить с помощью следующего уравнения: 2Al + 4H2SO4 = Al2(SO4)3 + S + 4H2O.

Кроме того, алюминий способен реагировать с растворами щелочей. Для проведения подобного химического взаимодействия нужно взять два моль рассматриваемого металла, столько же или калия, а также шесть моль воды. В результате образуются такие вещества, как тетрагидроксоалюминат натрия либо калия, а также водород, который выделяется в виде газа с резким запахом в молярных пропорциях два к трем. Данную химическую реакцию можно представить в виде следующего уравнения: 2АІ + 2КОН + 6Н2О = 2К[АІ(ОН)4] + 3Н2.

И последнее, что нужно рассмотреть, это закономерности взаимодействия алюминия с некоторыми оксидами. Самый распространенный и используемый случай - реакция Бекетова. Она, так же, как и многие другие из рассмотренных выше, происходит только при высоких температурах. Итак, для ее осуществления необходимо взять два моль алюминия и один моль оксида феррума. В результате взаимодействия этих двух веществ получим оксид алюминия и свободное железо в количестве один и два моль соответственно.

Использование рассматриваемого металла в промышленности

Отметим, что применение алюминия - очень частое явление. Прежде всего, в нем нуждается авиационная отрасль. Наряду со здесь используются и сплавы на основе рассматриваемого металла. Можно сказать, что среднестатистический самолет на 50% состоит из сплавов алюминия, а его двигатель - на 25%. Также применение алюминия осуществляется в процессе изготовления проводов и кабелей благодаря его отличной электропроводности. Кроме того, данный металл и его сплавы широко применяются в автомобилестроении. Из этих материалов состоят корпусы автомобилей, автобусов, троллейбусов, некоторых трамваев, а также вагонов обычных и электропоездов.

Также его используют и в менее масштабных целях, например, для производства упаковок для пищевых и других продуктов, посуды. Для того чтобы изготовить серебристую краску, необходим порошок рассматриваемого металла. Такая краска нужна для того, чтобы защитить железо от коррозии. Можно сказать, что алюминий - второй по частоте использования в промышленности металл после феррума. Его соединения и он сам часто применяются в химической промышленности. Это объясняется особыми химическими качествами алюминия, в том числе его восстановительными свойствами и амфотерностью его соединений. Гидроксид рассматриваемого химического элемента необходим для очистки воды. Кроме того, он используется в медицине в процессе производства вакцин. Также его можно найти в составе некоторых видов пластика и других материалов.

Роль в природе

Как уже было написано выше, алюминий в большом количестве содержится в земной коре. Он особенно важен для живых организмов. Алюминий участвует в регуляции процессов роста, формирует соединительные ткани, такие, как костная, связочная и другие. Благодаря данному микроэлементу быстрее осуществляются процессы регенерации тканей организма. Его нехватка характеризуется следующими симптомами: нарушения развития и роста у детей, у взрослых - хроническая усталость, пониженная работоспособность, нарушение координации движений, снижение темпов регенерации тканей, ослабевание мышц, особенно в конечностях. Такое явление может возникнуть, если вы употребляете слишком мало продуктов с содержанием данного микроэлемента.

Однако более частой проблемой является избыток алюминия в организме. При этом нередко наблюдаются такие симптомы: нервозность, депрессия, нарушения сна, снижение памяти, стрессоустойчивости, размягчение опорно-двигательного аппарата, что может привести к частым переломам и растяжениям. При длительном избытке алюминия в организме часто возникают проблемы в работе практически каждой системы органов.

К такому явлению может привести целый ряд причин. В первую очередь это Учеными уже давно доказано, что посуда, изготовленная из рассматриваемого металла, непригодна для приготовления в ней пищи, так как при высокой температуре часть алюминия попадает в пищу, и вследствие этого вы употребляете намного больше этого микроэлемента, чем нужно организму.

Вторая причина - регулярное применение косметических средств с содержанием рассматриваемого металла или его солей. Перед применением любого продукта нужно внимательно читать его состав. Не исключением являются и косметические средства.

Третья причина - прием препаратов, в которых содержится много алюминия, на протяжении длительного времени. А также неправильное употребление витаминов и пищевых добавок, в состав которых входит данный микроэлемент.

Теперь давайте разберемся, в каких продуктах содержится алюминий, чтобы регулировать свой рацион и организовывать меню правильно. В первую очередь это морковь, плавленые сыры, пшеница, квасцы, картофель. Из фруктов рекомендуются авокадо и персики. Кроме того, богаты алюминием белокочанная капуста, рис, многие лечебные травы. Также катионы рассматриваемого металла могут содержаться в питьевой воде. Чтобы избежать повышенного или пониженного содержания алюминия в организме (впрочем, так же, как и любого другого микроэлемента), нужно тщательным образом следить за своим питанием и стараться сделать его как можно более сбалансированным.

Алюми́ний - элемент главной подгруппы III группы, третьего периода, с атомным номером 13. Алюминий – р-элемент. На внешнем энергетическом уровне атома алюминия содержится 3 электрона, которые имеют электронную конфигурацию 3s 2 3p 1 . Алюминий проявляет степень окисления +3.

Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий- лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Химические свойства алюминия

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H 2 O (t°);O 2 , HNO 3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. При разрушении оксидной плёнки алюминий выступает как активный металл-восстановитель.

1. Алюминий легко реагирует с простыми веществами-неметаллами:

4Al + 3O 2 = 2Al 2 O 3

2Al + 3Cl 2 = 2AlCl 3 ,

2Al + 3 Br 2 = 2AlBr 3

2Al + N 2 = 2AlN

2Al + 3S = Al 2 S 3

4Al + 3С = Al 4 С 3

Сульфид и карбид алюминия полностью гидролизуются:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S­

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4

2. Алюминий реагирует с водой

(после удаления защитной оксидной пленки):

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2­

3. Алюминий вступает в реакцию со щелочами

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2­

2(NaOH H 2 O) + 2Al = 2NaAlO 2 + 3H 2

Сначала растворяется защитная оксидная пленка: Al 2 О 3 + 2NaOH + 3H 2 O = 2Na.

Затем протекают реакции: 2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 , NaOH + Al(OH) 3 = Na,

или суммарно: 2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ,

и в результате образуются алюминаты: Na - тетрагидроксоалюминат натрия Так как для атома алюминия в этих соединениях характерно координационное число 6, а не 4, то действительная формула тетрагидроксосоединений следующая: Na

4. Алюминий легко растворяется в соляной и разбавленной серной кислотах:

2Al + 6HCl = 2AlCl 3 + 3H 2­

2Al + 3H 2 SO 4 (разб) = Al 2 (SO 4) 3 + 3H 2

При нагревании растворяется в кислотах - окислителях , образующих растворимые соли алюминия:

8Al + 15H 2 SO 4 (конц) = 4Al 2 (SO 4) 3 + 3H 2 S + 12H 2 O

Al + 6HNO 3 (конц) = Al(NO 3) 3 + 3NO 2­ + 3H 2 O

5. Алюминий восстанавливает металлы из их оксидов (алюминотермия):

8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe

2Al + Cr 2 O 3 = Al 2 O 3 + 2Cr