Полимерные материалы в технологических машинах и оборудовании. Лекция «Применением полимерных материалов и другие способы восстановлении деталей машин. Основные области применения пластмасс в машиностроении

  • Глава 2 технологические системы как экономические объекты
  • 2.1. Структура, свойства и технико-экономический уровень технологической системы
  • 2.2. Закономерности развития технологических систем
  • Раздел II анализ и экономическая оценка базовых технологий в отраслях, определяющих нтп Глава 3. Анализ и экономическая оценка базовых технологий в черной металлургии
  • Глава 4. Анализ и экономическая оценка базовых технологий в цветной металлургии
  • Глава 5. Анализ и экономическая оценка базовых технологий заготовительного производства
  • 5.1. Технологические процессы изготовления заготовок методами пластической деформации
  • 5.2. Технологические процессы получения заготовок методами литья
  • Глава 6. Анализ и экономическая оценка технологий механической обработки
  • 6.1. Анализ и экономическая оценка традиционных методов обработки резанием
  • 6.2. Технико-экономический анализ технологического процесса механообработки
  • Зависимость себестоимости заданной партии деталей от годового выпуска
  • 6.3. Электрофизические и электрохимические методы обработки металлов
  • Глава 7. Анализ и экономичекая оценка технологий сборочно производства
  • 7.1. Сущность процесса сборки. Технико-экономические показатели
  • 7.2. Методы соединения сборочных элементов. Сущность процессов сварки и их сравнительная оценка
  • Глава 8. Анализ и экономическая оценка базовых технологий в химической промышленности
  • 8.1. Технология производства неорганических кислот
  • 8.2. Сущность технологических процессов производства полимерных материалов
  • 8.3. Сущность и экономическая оценка технологических процессов переработки топлива
  • Виды топлива
  • Раздел III. Особенности развития технологических систем на уровне предприятия и отрасли Глава 9. Технологическое развитие на уровне предприятия
  • 9.1. Формирование и развитие технологических систем предприятия с дискретным производством
  • 9.2. Формирование и развитие технологических систем предприятий с непрерывным производством
  • 9.3. Автоматизация производства
  • 9.4. Отраслевые особенности технологического развития
  • Раздел IV.Технологический прогресс и экономическое развитие Глава 10. Сущность и основные направления ускорения нтп
  • Глава 11. Прогрессивные химико-технологические процессы
  • Глава 12. Прогрессивные виды технологий
  • Глава 13. Рыночные аспекты технологического развития
  • Раздел I. Технологические процессы и технологические системы как экономические объекты
  • Раздел II. Анализ и экономическая оценка базовых технологий в отраслях, определяющих нтп Главы 3 и 4. Анализ и экономическая оценки базовых технологий в черной и цветной металлургии
  • Глава 5. Анализ и экономическая оценка базовых технологий заготовительного производства
  • Глава 6. Анализ и экономическая оценка технологий механообработки
  • Глава 7. Анализ и экономическая оценка технологий сборочного производства
  • Глада 8. Анализ и экономическая оценка базовых технологий в химической промышленности
  • Раздел III. Особенности развития технологических"систем на уровне предприятия и отрасли
  • Раздел IV. Технологический гресс и экономическое развитие
  • Список рекомендуемой литературы
  • 8.3. Сущность и экономическая оценка технологических процессов переработки топлива

    Топливом называются твердые, жидкие и газообразные горючие вещества, являющиеся источником тепловой энер­гии и сырьем для химической промышленности.

    В результате химической переработки различных топлив получают огромное количество углеводородного сырья для производства пластических масс, химических волокон, синте­тических каучуков, лаков, красителей, растворителей и т.п. Так, например, при коксовании углей получают: бензол, то­луол, ксилолы, фенол, нафталин, антрацит, водород, метан, этилен и другие продукты. При добыче нефти из нее выделя­ют "попутные" газы, которые содержат метан, этан, пропан, бутан и другие углеводороды, используемые в химической промышленности.

    Источниками углеводородного сырья слу­жат также газы, полученные в результате переработки нефти (крекинге, пиролизе, риформинге). Эти газы содержат пре­дельные углеводороды - метан, этан, пропан, бутан и непре­дельные углеводороды - этилен, пропилен и др. Кроме того, при переработке нефти могут быть получены и ароматичес­кие углеводороды: бензол, толуол, ксилол и их смеси.

    Одним из важнейших видов химического сырья является природный газ, содержащий до 98% метана. Древесина и древесные от­ходы являются источником получения целлюлозы, этилового спирта, уксусной кислоты, фурфурола и ряда других продук­тов. Из сланцев и торфа производят горючие газы, сырье для производства масел, моторных топлив, высокомолекулярных соединений и т.п.

    Сжигание топлива обеспечивает энергией тепловые электростанции, промышленные предприятия, транспорт, быт. Значение топлива как химического сырья с каждым годом растет.

    Поскольку в мировом топливном балансе повышается роль твердого топлива, то во всем мире разрабатывают мето­ды получения из углей и сланцев дешевого жидкого и газооб­разного топлива, а также химического сырья.

    Развитие угольной и ядерной энергетики даст в будущем возможность прекратить потребление нефти и природного газа в энергетических целях и полностью передать эти виды топлива в сферу промышленности как сырье для химической про­мышленности, а также для синтеза белков и жиров.

    Все топлива по агрегатному состоянию делятся на твер­дые, жидкие и гааообразные; по происхождению - на есте­ственные и искусственные {См.табл.}.

    Искусственные топлива получают в результате переработ­ки естественных топлив.

    Виды топлива

    Агрегатное состояние топлива

    Т О П Л И В О

    естественное

    искусственное

    Древесина, торф, уголь, сланцы

    Кокс, полукокс, древесный уголь

    Бензин, керосин, лигроин, мазут

    Газообразное

    Природный газ, попутные газы

    Кокосовый газ, генераторные газы, газы нефтепереработки

    Твердые топлива состоят из горючей органической массы и негорючей, или минеральных примесей и баласта. Органи­ческая часть топлива состоит из углерода, водорода и кислоро­да. Помимо этого в ней могут содержаться азот и сера. Него­рючая часть топлива состоит из влаги и минеральных веществ. Важнейшим жидким топливом является нефть.

    Нефть содержит 80-85% углерода, 10-14% водорода и представ­ляет собой сложную смесь углеводородов. Помимо углеводо­родной части в нефти имеются небольшая неуглеводородная часть и минеральные примеси. Углеводородная часть нефти состоит из углеводородов трех рядов: парафинового (алканы), нафтенового (циклены) и роматического (арены).

    Газообразные парафиновые углеводороды от СН 4 до С 4 Н 10 находятся в нефти в растворенном состоянии и могут быть выделены из нее в виде попутных газов при добыче нефти. Жидкие парафиновые углеводороды от С 5 Н 34 до С 15 Н 34 составляют основную массу жидкой части нефти и жидких фракций, получаемых при ее переработке.

    Твердые парафиновые углеводороды от С 16 Н 34 и выше растворены в нефти и могут быть выделены из нее.

    Нафтеновые углеводороды представлены в нефти главным образом производными циклопентана и циклогексана.

    Ароматические углеводороды содержатся в нефти, в виде бензола, толуола, ксилола в небольших количествах.

    Неуглеводородная часть нефти состоит из сернистых, кис­лородных и азотистых соединений. Кислородные соединения - это нафтеновые кислоты, фенолы, смолистые вещества.

    Минеральные примеси - это механические примеси вода, минеральные соли, зола.

    Механические примеси - твердые частицы песка, глины, пород - выносятся из недр земли с потоком добываемой нефти. Вода в нефти присутствует в двух видах: свободная, отделяе­мая от нефти при отстаивании; в виде стойких эмульсий, кото­рые могут быть разрушены только специальными, методами.

    Минеральные соли, например, хлориды магния и каль­ция, растворены в воде, содержащейся в нефти.

    Зола составляет в нефти сотые, и даже тысячные доли процента.

    Твердые топлива перерабатывают следующими методами: пиролиз, или сухая перегонка, газификация и гидрирование.

    Пиролиз осуществляется при нагревании топлива без доступа воздуха. В результате протекают физические процес­сы, например испарение влаги, и химические процессы - превращение компонентов топлива с получением;ряда хими­ческих продуктов. Характер отдельных процессов, протекаю­щих при переработке различных топлив, различен.

    В основ­ном все они требуют подвода тепла извне. Нагрев реакцион­ных аппаратов производится горячими дымовыми газами, ко­торые передают тепло топливу через стенку аппарата или же при непосредственном соприкосновении с топливом.

    Газификация - процесс переработки топлива, при котором органическая часть его превращается а горючие газы в присутствии воздуха, водяного пара, кислорода и дру­гих газов. Этот процесс экзотермический. Температура гази­фикации составляет 900-1100 °С.

    Гидрирование - переработка твердого топлива, при которой под влиянием высокой температуры, при дейст­вии водорода и в присутствии катализаторов происходят хи­мические реакции, приводящие к образованию продуктов, более, богатых водородом, чем исходное сырье. Качество и количество продуктов, полученных при гидрировании, зави­сит от вида перерабатываемого топлива, от условий проведе­ния процесса и ряда других факторов.

    Методы переработки нефти различны и их можно разде­лить на две группы: физические и химические.

    Физические методы переработки основаны на использова­нии физических свойств фракций, входящих в состав нефти. Химических реакций при, этих методах переработки не проте­кает. Наиболее распространенным физическим методом пере­работки нефти является ее перегонка, при которой нефть разделяет на фракции.

    Химические методы переработки основаны на том, что под влиянием высоких температур и давления в присутствии катализаторов углеводороды, содержащиеся в нефти и неф­тепродуктах, претерпевают химические превращения, в ре­зультате которых образуются новые вещества.

    Термический крекинг- химический метод переработки нефти, суть которого заключается в расщеплении длинных молекул тяжелых углеводородов, входящих в высоко-кипящие фракции, на более короткие молекулы легких, низ­кокипящих продуктов Термический крекинг протекает при высоких температурах 450-500 °С и повышенном давлении. Термический крекинг, проводимый при температуре 670- 1200 °С и при атмосферном давлении называется пиролизом.

    Каталитическим называется крекинг с применением катализатора. Применение катализатора позво­ляет снизить температуру крекинга и не только увеличить количество получаемых продуктов, но и улучшить их качест­во. Катализаторами служат глины типа бокситов, а также синтетические алюмосиликаты, содержащие 10-25% А1 2 О 3 , SiO 2 . Температура крекинга - 450 - 500 °С. Процесс идет при повышенном давлении.

    Разновидностью каталитического крекинга является риформинг. Катализатором служит платина, нанесенная на окись алюминия.

    С помощью вышеописанных методов переработки естест­венных топлив получают искусственные твердые, жидкие и га­зообразные топлива, а также важнейшие виды нефтепродуктов.

    В результате коксования углей получают следующие про­дукты:

    1. Кокс - продукт темно-серого цвета, пористость ко­торого составляет 45-55%, содержит 97-98% углерода. В зависимости от назначения делится на:

    а) доменный кокс - крупный, более 40 мм в диаметре, прочный и пористый. По содержанию серы подразделяется на марки КД-I, КД-2, КД-3. Содержание серы не должно превышать 1,3-1,9%;

    б) литейный кокс (марки КЛ). Нижний предел крупности- 25 мм в диаметре. Содержание серы в нем допускается не выше 1,2-1,3%. Он имеет меньшую пористость и прочность по сравнению с доменным коксом;

    в) коксовый орешек (КО) применяется для производства ферросплавов. Размер 10 - 25 мм в диаметре. Коксик - фракция от 10 до 20 мм - применяется для газификации;

    г) коксовая мелочь (фракция диаметром менее 10 мм) применяется для агломерации;

    д) кокс, не пригодный для технических нужд из-за большого содержания золы и серы, а также вследствие низких механических свойств, используется в качестве топлива.

      Обратный коксовый газ содержит 60% водорода и 25% метана, остальное - азот, окись углерода, углекислый газ, кислород, непредельные углеводороды. При­меняется для подогрева воздушного дутья в доменных печах, для обогрева сталеплавильных, коксовых и других печей, а также служит сырьем для производства водорода и аммиака.

      Сырой бензол состоит из бензола, толуола, ксилола, сероуглерода, фенолов и др. Вещества, входящие в состав сырого бензола, широко используются в производстве полимеров, красителей, лекарственных препаратов, взрывча­тых веществ, ядохимикатов и др.

    4. Каменноугольная смола является сме­сью ароматических углеводородов. Ее используют для произ­водства красителей, химических волокон, пластических масс, в фармацевтической промышленности, а также для производства различных технических масел.

    Продукты прямой перегонки нефти можно разделить на три группы: топливные фракции, масляные дистилляты и гудрон. Наиболее ценной топливной фракцией являются бензины, в состав которых входят углеводороды с температурой кипе­ния 180-200 °С. Бензины применяются как компоненты авто­мобильных и авиационных бензинов и в качестве растворителей.

    Лигроины включают углеводороды с температурами кипения 105-220 °С. Легкий лигроин (с температурой кипе­ния 105 - 150 °С) используется как сырье для дальнейшей пере­работки на бензины, а тяжелый - как компонент реактивных топлив или растворителей для лакокрасочной промышленности.

    Керосины - углеводородная фракция с температурами кипения 140-330 °С; Применяются в качестве осветительного керосина, а также в качестве реактивных и дизельных топлив.

    Газойль - фракции с температурами кипения до 400 °С. Легкий газойль (соляр) является основой дизельных топлив. Тяжелые газойли являются сырьем для дальнейшей переработки.

    Maзут - фракция, включающая углеводороды, пара­фин, маслянистые и смолистые вещества с температурой ки­пения свыше 300 °С. Легкие мазуты применяются в качестве котельного топлива и топлива газовых турбин; тяжелые идут на дальнейшую переработку.

    Масляные дистилляты - фракции, состоящие из углеводородов С 20 –С 70 . Температуры кипения ве­ществ, входящих в их состав, составляют от 350 до 550 °С. Масляные дистилляты применяют для получения большого количества смазочных и специальных масел.

    Гудрон состоит из смолистых веществ, парафинов и некоторого количества тяжелых углеводородов циклического строения. Гудрон - полупродукт для получения битумов и кокса. Некоторые виды гудрона применяются в качестве мягчителей для резиновой промышленности.

    Продуктами крекинга являются: крекинг-бензины, кре­кинг-газы и крекинг-остаток.

    Крекинг-бензины применяют в качестве компонентов автомобильных бензинов. Крекинг-газы используются в каче­стве топлива и как сырье для синтеза органических соедине­ний. Крекинг-остаток является смесью смолистых и асфальтовых веществ с некоторым количеством непрореаги­ровавшего сырья. Применяется крекинг-остаток как котель­ное топливо и сырье для производства битума.

    К технико-экономическим показателям нефтеперерабаты­вающей и коксохимической промышленности относятся: про­изводительность и мощность оборудования, интенсивность процесса, производительность труда, себестоимость продук­ции, капитальные затраты. Коксохимическая и нефтеперера­батывающая отрасли промышленности характеризуются высокой материале- и энергоемкостью.

    Затраты на сырье при производстве нефтепродуктов составляют 50-75%. Следова­тельно, основным фактором, влияющим на себестоимость, является снижение затрат на тонну выпускаемой продукции, которое можно осуществить совершенствованием технологи­ческих процессов переработки нефти и кокса, применением каталитических процессов, более совершенных аппаратов и комплексной автоматизации, что ведет к сокращению капи­тальных затрат, затрат на энергию и пар, повышение произ­водительности

    Наблюдаемое в настоящее время в России становление машиностроительной индустрии, обеспечивающей реализацию технологических процессов производства полимерной тары и упаковки, как и всякая новация, сопровождается появлением всякого рода проблем, на которые и хотели бы обратить ваше внимание.

    Появление новой области промышленной индустрии обусловило и появление специальной терминологии, которая достаточно широко, но, к сожалению, не всегда правильно употребляется, даже в среде специалистов. Такая ситуация создаёт вполне определённые трудности не только в восприятии различного рода информационных материалов о полимерной упаковке и оборудовании для её производства, но, что ещё более неприемлемо, зачастую вводит в заблуждение, формируя ложные представления по тем или иным аспектам, связанным с производством и использованием полимерной упаковки. Попробуем разобраться с основными определениями, понятиями и экономическими категориями, сопровождающими процессы производства полимерных упаковочных средств и оборудование для их реализации.

    Если обратиться к ГОСТ 17527-86 "Упаковка. Термины и определения", то станет понятно, что под упаковкой понимается некий комплекс защитных мер и материальных средств (курсив наш), обеспечивающих подготовку различного рода продукции к транспортированию и её материальную сохранность. Из приведённого определения ясно, что разработчики ГОСТ стремились в одном определении совместить понятие об упаковке как о комплексе технологических процессов, обеспечивающих упаковывание продукции с помощью специального оборудования или вручную, с одной стороны, а с другой - как о материальных средствах (конкретных видах изделий), обеспечивающих защиту продукции от повреждения или потерь в процессе транспортировки, складирования и хранения. Отсюда и совершенно разный смысл, который может вкладываться в термин "упаковка". Не будем обсуждать достоинства или недостатки данного определения, но отметим тот факт, что оно совсем не затрагивает такого понятия как "тара", которая является неотъемлемым, а иногда и единственным элементом (средством) упаковки, и также представляющая собой конкретные виды изделий для размещения продукции. Во многих конкретных случаях достаточно сложно разграничить понятия "тара" и "упаковка", а поэтому в литературе часто пользуются обобщённым понятием, определяемым как тароупаковочное средство. О технологиях производства таких средств из полимерных материалов и оборудовании для их реализации и пойдёт речь ниже.

    В мировой практике существует большое разнообразие технологических методов переработки полимерных материалов в тароупаковочные средства, реализуемых на соответствующих видах специального оборудования. Наиболее распространены среди них следующие: литьевое (инжекционное) формование, экструзионно- и инжекционно-раздувное формование, пневмо- и вакуумформование, механотермоформование , а также экструзионные технологии получения листовых и плёночных материалов . Рассмотрим существо этих технологических методов, учитывая, что полимерные тароупаковочные средства изготавливаются из термопластичных полимерных материалов, часто называемых термопластами.

    Метод литьевого (инжекционного) формования термопластов (рис.1) заключается в том, что исходный полимерный материал в виде гранул или порошка загружается в бункер литьевой машины, где захватывается вращающимся шнеком (червяком) 3 и транспортируется им вдоль оси пластикационного обогреваемого цилиндра 2 в его сопловую часть, переходя при этом из твёрдого состояния в состояние расплава. По мере накопления необходимого объёма расплава полимера 4 последний впрыскивается за счёт поступательного перемещения шнека через специальное сопло 5 в сомкнутую охлаждаемую литьевую форму 1 . Заполнивший полость формы расплав полимера удерживается в ней какое-то время под давлением и остывает. Далее литьевая форма раскрывается, готовое изделие 6 удаляется из её полости, а цикл формования повторяется.

    Метод реализуется с помощью специального оборудования, называемого литьевыми машинами (выпускавшиеся ранее в СССР литьевые машины носят название "термопластавтоматы" ), и имеет ряд преимуществ по сравнению с другими методами формования изделий из полимеров: высокая производительность, высокий уровень механизации и автоматизации реализуемого процесса, отсутствие этапа получения заготовки для формования изделий, небольшое количество отходов, возможность формования изделий с практически любым заданным распределением толщины стенок. К недостаткам следует отнести невозможность формования полых изделий закрытого типа (бутылок, канистр, и т. п.) и крупногабаритных изделий. Вместе с тем, как ни один другой, этот метод имеет хорошо развитую теоретическую базу, научно обоснованные и широко применяемые в практике методы расчёта и конструирования формующего инструмента для его реализации, обеспечивающие производство изделий с задаваемыми параметрами.

    Реализация метода экструзионно-раздувного формования полимерной тары и упаковки (рис.2) заключается в следующем: исходный полимерный материал в виде гранул или порошка пластицируется вращающимся шнеком экструдера (червячного пресса) в его обогреваемом цилиндре и продавливается (экструдируется) через формующий инструмент - кольцевую экструзионную головку 1 , выходя из него в виде трубчатой (рукавной) заготовки 2 и попадая в пространство между разомкнутыми половинами охлаждаемой раздувной формы 4 , смонтированными на подвижных плитах приёмного устройства. По достижению заготовкой определённой длины полуформы смыкаются с захватом заготовки и её раздуванием сжатым газом, подаваемым в полость заготовки через раздувной ниппель 3 . После охлаждения раздувные формы размыкаются, и готовое полое изделие 5 снимается с раздувного ниппеля. Далее цикл формования повторяется.

    Данный метод обладает рядом преимуществ: простота технологии и возможность полной автоматизации процесса формования, высокая производительность в сочетании с возможностью совмещения производства тары в одном потоке с производством затариваемой продукции, её расфасовкой, укупоркой, этикетированием тары и т. п., относительно невысокая стоимость технологического оборудования и формующего инструмента (раздувных форм, экструзионных головок). К основным недостаткам метода следует отнести следующее: его реализация протекает в два этапа (получение трубчатой заготовки и её последующее раздувное формование в изделие), что требует наличия двух типов формующего инструмента (экструзионной головки для получения заготовки и раздувной формы); получаемые изделия обладают значительной разнотолщинностью (неоднородностью толщины стенок); наличие технологических отходов. Однако достоинства и технико-экономические показатели метода устойчиво обеспечивают не только "выживаемость", но и его развитие в условиях рынка. Так, например, в последнее время появились сведения о новых разновидностях метода экструзионно-раздувного формования и формующих элементах оборудования для их реализации. Отдельными исследованиями показано, что, например, принудительное растяжение заготовки в процессе её раздувания в сочетании с интенсивным охлаждением изделий приводит к изменениям в структуре полимеров, влияющим на их эксплуатационные характеристики (прочность, газопроницаемость, теплопроводность и т.п.). Однако пока эти разновидности не получили широкого распространения в производстве упаковки.

    Разнотолщинность полимерной тары и упаковки, получаемых методом экструзионно-раздувного формования, обусловлена несколькими причинами. Одна из них заключается в гравитационной вытяжке заготовок в процессе их экструзии через формующий инструмент. Для борьбы с этим явлением разработано несколько способов. Например, для снижения гравитационной вытяжки заготовок оптимизируют скорость экструзии заготовок. Широко также применяется "программирование" заготовки, когда её гравитационная вытяжка компенсируется за счёт целенаправленного изменения толщины стенки последней в процессе экструзии. Для этого используются экструзионные головки специальных конструкций, позволяющие в процессе экструзии по определённой программе управлять шириной формующего кольцевого зазора головки. Успех "программирования" заготовки зависит от корректности решения задачи о её гравитационной вытяжке, представляющего собой функцию управления формующим зазором экструзионной головки. В соответствии с этой функцией программируются командно-задающие устройства, управляющие работой экструзионно-раздувных агрегатов.

    Управление формующим зазором инструмента (кольцевой экструзионной головки) используется и для получения "программированных" трубчатых заготовок, обеспечивающих производство изделий с заданным распределением толщины их стенок. Задача определения функции управления формующим зазором головки в этом случае гораздо сложнее, чем в предыдущем. На практике функцию управления подбирают опытным путём при формовании каждого конкретного изделия.
    С этой целью сначала экструдируют заготовку с постоянной толщиной стенки, нанося на её поверхность маркировку, а затем раздувают её в изделие. Полученное изделие разрезают и анализируют распределение толщины стенок, сравнивая с заданным. Затем вся процедура повторяется, но с той разницей, что при экструзии заготовки за счёт изменения зазора формующего канала головки увеличивают или уменьшают толщину стенки заготовки в необходимых (согласно маркировке) местах в соответствии с результатами предыдущего эксперимента. Полученное изделие вновь подвергают анализу, и так продолжают до тех пор, пока распределение толщины стенок в получаемом изделии не будет соответствовать заданному. Такая процедура, повторяемая иногда до десятка и более раз, требует определённых трудозатрат, расхода сырья, тепло- и энергоносителей. Более того, зачастую оказывается, что спроектированная конструкция изделия вообще не позволяет отформовать его с заданным распределением толщины стенок.
    Ещё одна важная практическая проблема, которую приходится решать при реализации рассматриваемого метода состоит в необходимости учёта явления высокоэластического восстановления, наблюдаемого при экструзии заготовок и заключающегося в изменении геометрических размеров ("разбухании") экструдата по отношению к геометрическим размерам формующего канала инструмента. Не вдаваясь в анализ теоретических представлений о существе этого процесса и способах его описания, подчеркнём лишь актуальность учёта этого явления с точки зрения расчёта и конструирования геометрических параметров профилирующих элементов (дорнов и мундштуков) экструзионных головок, обеспечивающих получение заготовок с заданными геометрическими параметрами.

    Метод инжекционно-раздувного формования заключается в том, что на первой стадии процесса методом литьевого формования (см. выше) получают трубчатую заготовку, называемую преформой, которую затем раздувают в полое изделие. Данный метод может осуществляться по двум технологическим схемам. Первая из них предусматривает раздувное формование полученных заготовок сразу, после стадии литьевого формования. Для этого литьевые машины, обеспечивающие формование заготовок, оснащаются дополнительным узлом, в котором осуществляется раздувание заготовок в изделия. В этом случае отливаемые трубчатые заготовки, остающиеся на полых сердечниках, после раскрытия литьевой формы переносятся в узел раздувного формования, оснащённый раздувными формами, в котором и происходит раздувание заготовок в изделия. В соответствии со второй схемой (рис.3) стадии получения заготовок и их раздувного формования в изделия осуществляются отдельно друг от друга. В этом случае для получения преформ применяются обычные литьевые машины, оснащённые формующим инструментом, но стадия раздувного формования преформ в изделия осуществляется на специальных раздувных линиях, содержащих бункер-накопитель, устройство для ориентации и перемещения заготовок, устройство для разогрева заготовок 1 , узел раздувного формования разогретых заготовок 2 в изделия 5 , оснащённый раздувными полуформами 4

    И раздувным ниппелем 3 . К преимуществам данного метода следует отнести высокую степень механизации и автоматизации, а также высокую производительность оборудования: линии для раздувного формования полых изделий из инжекционных заготовок, выпускаемые фирмами "Сидель" (Франция), "Крупп-Каутекс" (Германия), позволяют производить от нескольких сотен до нескольких десятков тысяч изделий в час. Недостатки этого метода формования заключаются в высокой стоимости основного технологического оборудования и формующего инструмента, используемого для его реализации; во-вторых, промышленном использовании практически пока только одного полимерного материала - полиэтилентерефталата. Кроме того, производимые изделия также обладают разнотолщинностью.

    Метод пневмо - и вакуумформования полимерных изделий (рис.4) заключается в том, что закреплённая по контуру в зажимном устройстве 4 и установленная над формой (формующей матрицей) 3 плоская (листовая или плёночная) заготовка 1 разогревается нагревательным устройством 2 до определённой температуры, а затем под действием перепада давления, создаваемого между поверхностями заготовки, происходит её формование в изделие 5 . Известно много разновидностей данного метода, в которых перепад давлений обеспечивается различными способами. Наибольшее распространение получили два из них: создание избыточного пневматического давления над заготовкой и вакуумирование объёма полости под ней.

    Данный метод реализуется на различных типах вакуумформовочных машин, установках для механопневмоформования и разного рода нестандартном оборудовании. К его основным достоинствам следует отнести возможность производства крупногабаритных изделий, простоту технологии, относительно невысокую стоимость основного оборудования и формующего инструмента. Основные недостатки связаны с невысокой производительностью, наличием вспомогательных технологических операций (раскрой и вырезка заготовок для формования, механическая обработка готовых изделий), зависимостью от наличия исходных заготовок и достаточно большим количеством технологических отходов. Развитие и совершенствование метода направлено на создание автоматизированных машин и линий, обеспечивающих высокую производительность и отсутствие дополнительной механической обработки изделий в сочетании с их удовлетворительным качеством.

    Метод механотермоформования (рис.5) отличается от метода пневмо- и вакуумформования только тем, что формование изделия 5 из плоской заготовки 1 осуществляется за счёт поступательного перемещения формующего пуансона 3 , вытягивающего предварительно нагретую устройством 2 заготовку, закреплённую в зажимном устройстве 4 .

    Метод реализуется на вакуумформовочных машинах, специальном штамповочном оборудовании и линиях производства тары из рулонных материалов. Соответствующие современные автоматические линии (например, германской фирмы "Иллиг") характеризуются очень высокими параметрами: скорость движения рулонного материала достигает нескольких десятков метров в минуту, а штучная производительность - до десятков тысяч изделий в час. Это обеспечивает конкурентоспособность метода даже по отношению к литьевому формованию изделий из полимеров. К основным его недостаткам следует отнести зависимость от наличия листового или рулонного материала, относительно большое количество отходов и ощутимую разнотолщинность получаемых изделий.

    Экономическая целесообразность той или иной технологии определяется, прежде всего, серийностью производства изделия, что наглядно демонстрируется сравнительными данными, приведёнными в таблице, где за относительные условные единицы капитальных затрат и себестоимости производства 20-литровой ёмкости из полиэтилена приняты параметры, соответствующие её формованию пневмовакуумным методом.

    Кроме рассмотренных технологических методов, обеспечивающих, как правило, производство жёстких видов полимерной тары и упаковки, существуют технологии производства мягких упаковочных средств, к которым относятся полимерные плёнки и изделия из них (пакеты, мешки и т.п.). Заметим, что в популярной литературе достаточно часто понятие "полимерные плёнки" связывают с неким понятием "гибкие упаковочные материалы " . Хотелось бы обратить внимание на бессмысленность последнего понятия вообще: можно говорить лишь о свойстве различных материалов, полимерных в том числе, сопротивляться деформированию, вызываемому внешней нагрузкой. А вот сама сопротивляемость связывается в технике с совершенно чётким и давно известным понятием о жёсткости конструкции (именно конструкции, а не материала), определяемой её геометрией и свойствами материала, из которого она изготовлена. Если говорить о конструкциях, жёсткость которых мала и которые, как следствие, не могут передавать изгибающих моментов, то такие конструкции, изготовленные из металлов, называются безмоментными (безмоментные оболочки, мембраны), а из полимерных материалов - мягкими. Кстати, именно по критерию относительной жёсткости плоские полимерные изделия делятся на листы и плёнки.

    Методы производства и экономические
    показатели, отн. усл. ед.

    Годовой выпуск изделий, тыс. шт.

    Инжекционно-раздувное формование:
    капитальные затраты …………….

    себестоимость …………………….
    Пневмовакуумное формование:
    капитальные затраты …………….
    себестоимость …………………….
    Экструзионно-раздувное формование:
    капитальные затраты …………….
    себестоимость …………………….

    Производство полимерных плёнок базируется на экструзионных технологиях , реализация которых имеет две разновидности. Технологию производства рукавных плёнок можно пояснить на примере работы плёночной линии (рис.6) .

    Полимерное сырьё в виде гранул из загрузочного бункера 1 захватывается вращающимся шнеком червячного пресса 2 и транспортируется им внутри цилиндра
    пресса, расплавляясь и гомогенизируясь. Далее получаемый расплав полимера продавливается вращающимся червяком через кольцевую экструзионную головку 10 , выходя из неё в виде трубчатой заготовки 3 , которая раздувается сжатым газом в рукавную плёнку 4 , охлаждаемую обдувочным кольцом 9 . Полученная рукавная плёнка складывается специальным устройством 5 и "отбирается" тянущим устройством 6 , с которого затем поступает на устройство 8 , обеспечивающее сматывание её в рулон 7 .

    Однако не все полимерные материалы способны раздуваться в оболочечные конструкции, и описанная технология не годится для производства плёнок из таких материалов. В таких случаях применяют так называемый плоскощелевой метод, в соответствии с которым расплав полимера экструдируется через плоскощелевую экструзионную головку в виде полотна, которое "калибруется" в зазоре двух- или многовалковых гладильных каландров и окончательно охлаждается на рольганге (иногда и путём водяного орошения). Существующие технологии производства полимерных плёнок обеспечивают получение как однослойных, так и многослойных плёнок; производство последних сопряжено с большими сложностями как технологического, так конструктивного характера.

    В заключение обратим внимание на один из самых важных аспектов производства полимерных тароупаковочных средств, которому, даже в специализированных отечественных периодических изданиях не уделяется должного внимания, что не поддаётся никакому разумному объяснению. Речь о том, что ни одно тароупаковочное полимерное средство не может быть изготовлено без формующего инструмента, которым должен быть оснащён тот или иной тип технологического оборудования. Производители же оборудования, как правило, формующим инструментом его не комплектуют (исключение составляют лишь плёночные линии). Эта ситуация вполне понятна и объяснима: производитель оборудования не может позволить себе заранее проектировать, а тем более изготавливать формующий инструмент "на все случаи жизни". Более того, в зависимости от сложности проектируемого к производству изделия, выбранной технологии его изготовления стоимость формующего инструмента может достигать уровня стоимости самого технологического оборудования. Например, оснащение экструзионно-раздувного агрегата угловой экструзионной головкой, обеспечивающей "программирование" толщины стенки экструдируемой заготовки, почти вдвое увеличивает его стоимость. В индустриально развитых странах эта проблема решена - там уже давно существуют специализированные фирмы, занимающиеся вопросами проектирования и изготовления формующего инструмента для переработки полимеров. У нас, в России, решение этой проблемы находится пока в зачаточном состоянии. Это приводит к тому, что проектируемый не всегда профессионально подготовленными специалистами формующий инструмент не может обеспечить производство изделий, качество которых отвечало бы мировым стандартам. Кроме того, не следует забывать, что проектируемый формующий инструмент для производства того или иного вида изделий во многом, если не вообще, определяет выбор типоразмера оборудования. Отсюда следует, что выбор оборудования и проектирование формующего инструмента - неразрывно связанные задачи, решение которых должно оптимизировать производственный процесс. В противном случае формующий инструмент либо вообще нельзя установить на оборудование, либо оно работает не на полную технологическую мощность, снижая экономические показатели производства.

    Изложенное показывает, что производство тары и упаковки из полимерных материалов - весьма сложный, многоуровневый процесс, успешная реализация которого требует глубокой профессиональной подготовки не только в области экономики и технологий переработки полимеров, но прежде всего в области конструирования оборудования и формующего инструмента.

    Особенности технологических процессов изготовления поли­мерных материалов зависят от их состава и назначения. Главными технологическими факторами являются определенные температур­ные и силовые, формирующие изделия, для чего применяется раз­личное оборудование. В основном производство складывается из подготовки, дозировки и приготовления полимерных композиций, которые затем перерабатываются в изделия, и обеспечивается стаби­лизация их физико-механических свойств, размеров и формы.

    Основные приемы переработки пластмасс: вальцевание, каланд­рирование, экструзия, прессование, литье, промазывание, пропитка, полив, напыление, сварка, склеивание и др.

    Смешение композиций - это процесс повышения однородно­
    сти распределения всех ингредиентов по объему полимера иногда с дополнительным диспергированием частиц. Смешение может быть периодическим и непрерывным. Конструкция и характер работы смесителей зависят от вида смешиваемых материалов (сыпучие или пастообразные).

    Вальцевание - опе­рация, при которой пласт­масса формуется в зазоре между вращающимися валками (рис. 14.2). Пере­рабатываемая масса 2 не­сколько раз пропускается через зазор между валками 1 и 3, равномерно переме­шивается, затем перево­дится на один валок и сре­зается ножом 4. На вальцах непрерывного действия масса не только пропускается через зазор, но и движется вдоль него, а в конце процесса срезается ножом в виде узкой непрерывной ленты.

    Вальцевание позволяет доброкачественно смешивать компонен­ты пластмасс с целью получения однородной массы, при этом поли­мер, как правило, переводится в вязкотекучее состояние благодаря повышению температуры при перетирании. При многократном про­пускании массы через вальцы происходит пластификация, т. е. со­вмещение полимера с пластификатором путем ускоренного взаимно­го проникновения. Вальцы позволяют перетирать и дробить компо­ненты пластмасс. Это обеспечивается тем, что при движении в зазо­ре материалы сжимаются, раздавливаются и истираются, поскольку валки могут вращаться с различной окружной скоростью.

    Вальцы, на которых происходит окончательная отделка поверх­ности и калибровка, должны иметь гладкую полированную поверх­ность. По характеру работы вальцы бывают периодического и не­прерывного действия, а по способу регулирования температуры - обогреваемые (паром или электричеством) и охлаждаемые (водой).

    Каландрирование - процесс образования бесконечной ленты заданной толщины и ширины из размягченной полимерной смеси, однократно пропускаемой через зазор между валками.

    Конструкции каландров различаются в основном в зависимости от вида перерабатываемой массы - резиновых смесей или термо­пластов. Валки каландров изготовляют из высококачественного ко­кильного чугуна. Рабочую поверхность валка шлифуют и полируют до зеркального блеска. Валки обогреваются паром через внутрен­нюю центральную полость и периферийные каналы.

    Как правило, каландрирование выполняется в комплексе с валь­цеванием в одной технологической линии.

    Экструзией называется операция, при которой изделиям из пла­стмасс придают определенный профиль путем продавливания нагре­той массы через мундштук (формообразующее отверстие). Методом экструзии получают профильные (погонажные) строительные изде­лия, трубы, листы, пленки, линолеум, пороизол и многие другие. Размеры поперечного сечения изделий, изготовляемых методом экс­трузии, лежат в большом интервале: диаметр труб 05-250 мм, ши­рина листов и пленок 0,3-1,5 м, толщина 0,1-4 мм. Экструзионными машинами пользуются также для смешения композиций и гранули­рования пластмасс. Применяются экструзионные машины двух ти­пов: шнековые с одним или несколькими шнеками и шприц - машины. Наибольшее распространение нашли шнековые, или чер­вячные, экструдеры (рис. 14.4). Рабочим органом машины является винт (червяк), который осуществляет перемешивание массы и про­движение ее через профилирующую головку (дорн). В машину масса подается в виде гранул, бисера или порошка. Размягчение материала происходит за счет тепла, поступающего от обогревателей, которые устанавливаются в нескольких зонах.

    Обогрев J

    Рис. 14.4. Схема работы экструзионной машины:

    1 - загрузочный бункер; 2 - шнек; 3 - головка; 4 - калибрующая на­садка; 5 - тянущее устройство; б - дорн; 7 - фильтр

    SHAPE * MERGEFORMAT

    Рис. 14.5. Схема штампования (пресс-формования): а) загрузка пресс-материала; 6) смыкание формы и прессование; в) вытал­кивание изделия; 1 - пресс-материал; 2 - обогреваемая матрица пресс - формы; 3 - обогреваемый пуансон; 4 - ползун пресса; 5 - электрообог­реватель; 6 - изделие; 7 - выталкиватель

    Прессованием называют способ формования изделий в обогре­ваемых гидравлических прессах. Различают формование в пресс - формах (рис. 14.5) - при изготовлении изделий из пресс-порошков и плоское прессование в многоэтажных прессах - при изготовлении листовых материалов, плит и панелей. Прессование применяется преимущественно при переработке термореактивных полимерных композиций (фенопласты, аминопласты и др.).

    Для прессования строительных листовых материалов и панелей применяют многоэтажные гидравлические прессы усилием от 10 до 50 т, обогреваемые подогретой водой или паром. Прессование на многоэтажных прессах складывается из следующих операций: за­
    грузка пресса, смыкание плит, тепловая обработка под давлением, снятие давления, разгрузка. Методом плоского прессования форму­ют древесно-стружечные плиты, бумажные слоистые пластики, тек - столиты, древесно-слоистые пластики, трехслойные клееные панели. В пресс-формах изготовляют детали санитарно-технического и электротехнического оборудования, детали для отделки встроенного оборудования, оконные и дверные приборы, детали строительных машин и механизмов.

    Вспенивание - метод изготовления пористых звукотеплоизо­ляционных и упругих герметизирующих пластмасс. Пористая струк­тура пластмасс получается в результате вспенивания жидких или вязкотекучих композиций под влиянием газов, выделяющихся при реакции между компонентами или при разложении специальных до­бавок (порофоров) от нагревания. Вспенивание веществ - стабили­заторов пены путем нагнетания или растворения в полимере газооб­разных и легкоиспаряющихся веществ.

    Вспенивание может происходить в замкнутом объеме под дав­лением и без давления, а также в открытых формах или на поверхно­сти конструкции.

    Промазыванием называется операция, при которой пластиче­ская масса в виде раствора, дисперсии или расплава наносится на ос­нование - бумагу, ткань, войлок, разравнивается, декоративно обра­батывается и закрепляется. Примером может служить промазной ли­нолеум, павинол, линкруст и др. Наносимая масса разравнивается специальным ножом-раклей, регулирующим толщину слоя и степень вдавливания. Обычно основание движется, а разравнивающий нож неподвижен; регулируется лишь его наклон и зазор. Нанесенная и разровненная масса проходит обычно этап термообработки для раз­мягчения и лучшего сцепления ее с основанием.

    Пропитка состоит в окунании основы (ткани, бумаги, волокон) в пропиточный раствор с последующей сушкой. Эта операция осу­ществляется в пропиточных машинах вертикального и горизонталь­ного типа. Методом пропитки получают клеящие пленки (бакелито­вая), декоративные пленки (мочевино-меламиновые), а также полот­нища на основе стеклянных, асбестовых и хлопчатобумажных тка­ней, из которых в дальнейшем получают текстолиты.

    Полив - это процесс, при котором пластическая масса распре­деляется тонким слоем на металлической ленте или барабане и, за­твердевая, снимается в виде тонкой пленки. Часто этот процесс свя­зан с испарением растворителей. Таким путем получают, например, ацетилцеллюлозные прозрачные пленки.

    Литье. Различаются два вида литья: простое в формы и под дав­лением. При простом литье жидкая композиция или расплав залива­ются в формы и отвердевают в результате реакций полимеризации, поликонденсации или вследствие охлаждения. Примером служат отливка плиток пола из реактопластов, получение органического стекла и декоративных изделий из полиметилметакрилата. Охлажде­нием расплава при простом литье получают некоторые простейшие изделия из полиамидов (поликапролактама).

    Литье под давлением применяется при изготовлении изделий из термопластов. Полимер нагревается до вязкотекучего состояния в нагревательном цилиндре литьевой машины (рис. 14.6) и плунжером впрыскивается в разъемную форму, охлаждаемую водой.

    Давление, под которым впрыскивается расплав, может достигать 20 МПа. Таким способом изготовляют изделия из полистирола, эфи­ров целлюлозы, полиэтилена, полиамидов. Литье под давлением от­личается быстротой цикла, при этом виде переработки операции ав­томатизированы.

    Формованием называют переработку листовых, пленочных, трубчатых пластмассовых заготовок с целью придания им более сложной формы и получения готовых изделий. Формование произ­водят в основном при нагревании. К главным методам формования из листов относят штампование, пневмоформование и вакуум - формование (рис. 14.7).

    Рис. 14.7. Схема вакуум-формования: а) негативная форма; б) позитивная форма; в) предварительная вытяжка заготовки пу­ансоном; г) предварительная пневматиче­ская вытяжка заготовки; I-1II - позиции формования; 1 - заготовка; 2 - негатив­ная форма; 3 - стойка; 4 - зажимная рама; 5 - пуансон; 6 - позитивная форма; 7 - формовочная камера

    При штамповании из листов вырезают заготовки, нагревают их, помещают в пресс-форму между матрицей и пуансоном и сжимают под давлением до 1 МПа. Таким путем изготовляют детали канали­зационных систем из винипласта, световые колпаки из оргстекла для покрытий промышленных зданий, профильные детали из текстоли - тов для строительных конструкций.

    При пмевмо-формовании лист закрепляют по контуру матрицы и нагревают до слабого провисания. Затем нагретым воздухом, сжа­тым до 7-8 МПа, прижимают лист к поверхности матрицы. Разно­видностью этого способа является свободное выдувание. Таким спо­собом получают световые колпаки, емкости, кольца из полиакрила­тов, детали вентиляционных систем и химически стойкой аппарату­ры из поливинилхлорида.

    При вакуум-формовании лист закрепляют по контуру полой формы, нагревают и создают разрежение в полости. Под влиянием атмосферного давления лист прижимается к поверхности формы. Таким путем изготовляют детали санитарно-технического оборудо­вания из ударопрочного полистирола, полиакрилатов, виниловых полимеров.

    Напыление - способ нанесения на поверхность порошкооб­разных полимеров, которые, расплавляясь, прилипают к ней, а при охлаждении образуют прочную пленку покрытия. Различают газо­пламенное, вихревое и псевдосжиженное напыление. При газопла­менном напылении порошок полимера (полиэтилен, полиамид, по- ливинилбутироль), проходя через пламя, расплавляется и, падая на поверхность каплями, прилипает, образуя слой нужной толщины.

    Сварка и склеивание служат для соединения заготовок из пла­стмасс для получения изделий заданной формы. Сварку применяют для соединения термопластических пластмасс - полиэтилена, поливи­нилхлорида, полиизобутилена и др. По способу нагревания соединяе­мых концов различают сварку воздушную (нагретым воздухом), вы­сокочастотную, ультразвуковую, радиационную, контактную.

    Склеивание применяют для соединения как термопластичных, так и термореактивных пластмасс. В простейшем случае клеем для термопластичных пластмасс может служить органический раствори­тель, вызывающий набухание стыкуемых концов деталей и их сли­пание при сжатии. Чаще же используют специальные клеи. В зави­симости от условий производства и требуемой скорости соединения применяют клеи холодного и горячего отверждения.

    Занимают одно из ведущих мест среди конструкционных материалов для машиностроения. Так, потребление пластмасс в этой отрасли становится соизмеримым (в единицах объема) с потреблением стали. Непрерывно возрастает также применение лакокрасочных материалов, синтетических волокон, клеев, резины и др.

    Целесообразность применения полимеров в машиностроении определяется, прежде всего, возможностью удешевления продукции. При этом улучшаются также важнейшие технико-экономические параметры машин: уменьшается масса, повышаются долговечность, надежность и др. В результате внедрения полимеров высвобождаются ресурсы металла, а благодаря уменьшению отходов при переработке существенно повышается коэффициент использования материалов (средние значения коэффициента использования пластмасс примерно в 2 раза выше, чем для металлов).

    Основные достоинства полимерных конструкционных материалов:

    • высокая удельная (отношение прочности к плотности);
    • износостойкость;
    • устойчивость к химическим воздействиям;
    • хорошие диэлектрические характеристики;
    • свойства полимерных материалов можно варьировать в широких пределах модификацией полимеров или совмещением их с различными ингредиентами. В частности, при введении в полимеры соответствующих наполнителей (см. ) можно получать фрикционные и антифрикционные материалы, а также материалы с токопроводящими, магнитными и другими специальными свойствами.

    К недостаткам полимерных материалов относятся:

    • склонность к старению;
    • склонность к деформированию под нагрузкой (ползучесть);
    • зависимость прочностных характеристик от режимов нагружения (температуpa, время);
    • сравнительно невысокая теплостойкость;
    • относительно большой температурный коэффициент линейного расширения;
    • изменение размеров при воздействии на материал влаги или агрессивных сред.

    Из пластических масс изготовляют обширный ассортимент деталей и узлов машин, а также технологическую оснастку различного назначения.

    Основные области применения пластмасс в машиностроении:

    Виды деталей, узлов машин и технологической оснастки и пригодные для их изготовления полимерные материалы:

    • Зубчатые и червячные колеса: полиамиды, , пентапласты , поликарбонаты, , , волокниты, текстолит, ;
    • Шкивы, маховички, рукоятки, кнопки: полиамиды, аминопласты, волокниты, текстолит, древесные пластики;
    • Ролики, катки, бегуны: полиамиды, , полипропилен, поликарбонаты, древесные пластики;
    • Подшипники скольжения: полиамиды, полипропилен, , , пентапласты, поликарбонаты, полиформальдегид, фенопласты, волокниты, текстолит, древесные пластики;
    • Направляющие станков: полиамиды, эпоксипласты, текстолит;
    • Детали подшипников качения: полиамиды, поликарбонаты, полиформальдегид;
    • Тормозные колодки, накладки: фенопласты, волокниты, древесные пластики;
    • Трубы, детали арматуры, фильтры масляных и водных систем: полиэтилен, поливинилхлорид, полипропилен, поликарбонаты, стеклопластики;
    • Рабочие органы вентиляторов, насосов и гидромашин: полиамиды, полиэтилен, поливинилхлорид, полипропилен, пентапласты, поликарбонаты, стеклопластики.
    • Уплотнения: полиамиды, полиэтилен, , поливинилхлорид, полипропилен;
    • Кожухи, корпуса, крышки, резервуары: полиэтилен, аминопласты, поливинилхлорид, полипропилен, , полиакрилаты, поликарбонаты, фенопласты, стеклопластики;
    • Детали приборов и автоматов точной механики: полиамиды, полиэтилен, поливинилхлорид, полипропилен, пентапласты, поликарбонаты, полиформальдегид, фенопласты, волокниты;
    • Болты, гайки, шайбы: полиамиды, полиэтилен, аминопласты, поливинилхлорид, полипропилен, пентапласты, поликарбонаты, полиформальдегид, фенопласты, волокниты;
    • Пружины, рессоры, кулачковые механизмы, клапаны: полиамиды, поливинилхлорид, полипропилен, поликарбонаты, полиформальдегид, текстролит, стеклопластики;
    • Крупногабаритные элементы конструкций, емкости, лотки и др.: полиэтилен, поливинилхлорид, полистирол, стеклопластики;
    • Электроизоляционные детали, панели, щитки, корпуса приборов: полиамиды, полиэтилен, фторопласты, аминопласты, поливинилхлорид, полипропилен, полистирол, полиакрилаты, эпоксипласты, пентапласты, поликарбонаты, полиформальдегид, фенопласты, волокниты, текстолит, древесные пластики, стеклопластики;
    • Светопропускающие оптические детали (линзы, смотровые стекла и др.): полиэтилен, аминопласты, полипропилен, полистирол, полиакрилаты, поликарбонаты;
    • Копиры, контрольные шаблоны: полиэтилен, поливинилхлорид, полипропилен, эпоксипласты;
    • Холоднолистовые штампы: эпоксипласты, пентапласты, фенопласты, стеклопластики;
    • Литейные модели: полистирол, полиакрилаты, эпоксипласты, фенопласты, стеклопластики;

    Ниже рассматриваются примеры использования полимерных материалов в производстве деталей общемашиностроительного назначения (подшипники, зубчатые колеса, ремни, шкивы и др.). О специфике применения этих материалов в различных отраслях машиностроения См. , , Полимеры в электротехнике, Полимеры на железнодорожном транспорте.

    • Для изготовления подшипников скольжения используют разнообразные материалы, обладающие большой износостойкостью и низким коэффициентом трения (см. Антифрикционные полимерные материалы), а также теплостойкостью, стабильностью размеров в условиях эксплуатации и длительным сроком службы при больших значениях несущей способности (произведения допустимых нагрузки и скорости скольжения). Износостойкость, несущая способность и другие свойства подшипниковых материалов резко повышаются при введении в них наполнителей (при наполнении скрытокристалличным графитом износостойкость возрастает в 1000 раз). Подшипники из графитонаполненного фторопласта-4 могут работать без смазки, а также в агрессивных средах (см. Графитопласты).
    • Основные требования к пластмассам для зубчатых колес - высокие контактная прочность и сопротивление изгибу, износостойкость, демпфирующая способность, динамическая выносливость, стабильность размеров . При использовании пластмасс, удовлетворяющих этим требованиям, повышается долговечность колес, в среднем в 1,5 раза снижается уровень шума, уменьшается чувствительность передачи к наличию смазки, снижаются требования к точности изготовления колеса. Однако единичный зуб из полиамида со стандартным контуром по статической прочности уступает зубьям из алюминия, улучшенной или закаленной стали соответственно в 1,4, 3-5 и 7 раз. Деформация зубьев из пластмассы достигает десятых долей мм, а размеры контактной площадки становятся соизмеримыми с размером зуба. Все же благодаря новым технологическим и коструктивным решениям удалось расширить области применения зубчатых колес из пластмасс, увеличить их несущую способность, повысить кинематическую точность, износостойкость и др. Армирование колес из пластмасс металлом (из него изготовляют ступицы, диск, венец и др. элементы) позволяет наиболее эффективно использовать достоинства обоих материалов.
    • Пластмассы все более широко используют вместо нержавеющих сталей и других материалов в волновых передачах , отличающихся компактностью и большими передаточными отношениями (например, от 64: 1 до 320: 1 ), а также для изготовления звездочек в цепных передачах.
    • Плоские, клиновые и зубчатые ремни из пластмасс (полиамидов, поливинилхлорида), а также из резины (см. Резино-технические изделия) могут быть использованы для передачи даже значительных мощностей. В отличие от ремней из традиционных материалов, ремни из полимерных материалов можно эксплуатировать в агрессивных средах без применения натяжных роликов. Многослойные ремни шириной 10-1200 мм, армированные синтетическими волокнами, могут быть использованы для передачи мощностей до 3600 кет при скоростях 50 -80 м/сек . Применение в ременных передачах прочных и износостойких шкивов из пластмасс, характеризующихся малой плотностью, высоким коэффициентом сцепления с ремнем, стабильностью размеров, позволяет уменьшить инерционные силы, увеличить срок службы ремней, сократить мощность, потребляемую станком, а в некоторых случаях повысить тяговую способность передачи.
    • Использование полимерных материалов для футеровок блоков и барабанов подъемных устройств повышает стойкость этих деталей и увеличивает долговечность канатов.
    • Использование труб из полимерных материалов вместо металлических приводит к упрощению их монтажа вследствие снижения массы, уменьшению гидравлических потерь и расхода мощности на транспортировку материалов, увеличению пропускной способности труб, повышению срока службы (особенно в агрессивных средах, в земле и воде) и стойкости к гидравлическому удару.
    • Применение прозрачных полимерных труб позволяет, кроме того, визуально наблюдать за движением продукта. О трубах из полимерных материалов см. также Полимеры в сельском и водном хозяйстве, Полимеры в строительстве.
    • Основным материалом для уплотнительных прокладок , которые, помимо высокой износо- и теплостойкости, должны обладать , а также стойкостью в различных агрессивных средах, служат резины на основе хлоропренового, бутадиен- нитрильного, кремнийорганических, фторсодержащих и других каучуков специального назначения (см. Каучуки синтетические, Резино-технические изделия). Для уплотнения подвижных соединений или соединений, которые подвергаются действию высоких давлений, используют обычно уплотнители из пластмасс.
    • Полимерные материалы применяют для фиксации резьбовых соединений , осуществляемой различными способами: использованием гаек из пластмасс, нарезку на которых создают при ввинчивании в них металлических болтов, применением шайб и вкладышей из пластмасс, а также с помощью быстроотверждающихся компаундов (см. Компаунды полимерные). Эти способы фиксации обеспечивают повышение срока службы резьбовых соединений, выполняющих одновременно функции уплотнительных элементов.
    • Эпоксидные и акрилатные компаунды применяют в качестве универсальных компенсаторов погрешностей при сборке узлов машин и приборов. Благодаря их использованию процесс сборки (например, редукторов) сводится к установке деталей с требуемой точностью и заливке компаундом пространства между сопрягаемыми деталями. Заполняя зазоры, компаунд компенсирует все погрешности обработки и сборки деталей. Применение компенсаторов позволяет на 2-3 класса расширить допуски на изготовление поверхностей, снизить себестоимость обработки деталей, уменьшить трудоемкость их сборки. Заданная точность замыкающего звена сборочных размерных цепей может быть обеспечена за одну выверку.
    • С помощью клеев (см. Клеи синтетические) удалось создать сборные зубчатые колеса из металлов и пластмасс, упростить сборку узлов подшипников, удешевить ремонт машин, повысить их надежность. Например, в результате применения направляющих с приклеенными накладками из антифрикционных материалов повысились эксплуатационные свойства станков и упростился их ремонт. Использование синтетических клеев при изготовлении магнитных плит привело к улучшению их электроизоляционных свойств.
    • Технологическая оснастка из пластмасс (кондукторы для сверления деталей, шаблоны для контроля деталей сложной конфигурации, штампы, приспособления для разметки и др.) легче, дешевле, проще в изготовлении, чем аналогичная металлическая. Эксплуатационные свойства такой оснастки повышаются при ее армировании металлами , применением в качестве наполнителей металлических волокон или металлизацией рабочих поверхностей (см. Металлизация пластмасс). Из пластмасс изготовляют различную литейную оснастку . Так, в промышленности широко используют метод литья деталей по выжигаемым моделям из , из фенопластов изготовляют формовочные смеси, оболочковые формы и стержни . Полимерные материалы служат также связующим в абразивном инструменте (например, при изготовлении термо- и водостойких шлифовальных шкурок).
    • Важное хозяйственное значение имеет применение лакокрасочных и других полимерных материалов для антикоррозионной защиты металлических конструкций при их сооружении, транспортировке, консервации и эксплуатации, а также для декоративной отделки и придания специальных свойств (электроизоляционных, антифрикционных и др.). Объем потребления таких материалов составляет -30% общего потребления полимерных материалов в машиностроении. См. Лакокрасочные покрытия, Антикоррозионные полимерные покрытия, Защитные лакокрасочные покрытия, Напыление.

    Чтобы получить дополнительную информацию и (или) узнать последние новости по данной теме посетите тематическую закладку: . Кроме того вы можете воспользоваться и другими тематическими метками (см. ниже).

    Список литературы: Лит.: ВольмирА. С, Павленко В. Ф., Пономарев А. Т., Механика полимеров, № 1, 105 A972); Применение конструкционных пластмасс в производстве летательных аппаратов, под ред. А. Л. Абибова, М., 1971; Павленко В. Ф., Силовые установки летательных аппаратов вертикального взлета и посадки, М., 1972; Булатов Г. а., Пенополиуретаны и их применение на летательных аппаратах, М., 1970; Пригода Б. А., Кокунько В. С, Обтекатели антенн летательных аппаратов, М., 1070; Scow A. L., SAMPE Journal, 8, № 2, 25 A972); Peterson G. P., AIAA Paper, № 367, 1, A971); WetterR., Kunststoffe, 10, № 10, 756 A970); Johnson Z. P., Rubber World, 161, № 6, 79 A970); Encyclopedia of polymer science and technology, v. 1, N. Y.- , 1964, p. 568. Г. С. Головкин.



    Машиностроение - одна из немногих базовых отраслей народного хозяйства, определяющая развитие всего хозяйства в целом, как было специально подчеркнуто на XXVI съезде КПСС. Развитию и совершенствованию машиностроения наша партия всегда уделяла первостепенное внимание - от пятилетки индустриализации, даже раньше, от плана ГОЭЛРО, до сегодняшних дней. Во всех современных развитых странах объем продукции машиностроения составляет более четверти всего объема промышленной продукции, основные фонды машиностроения и металлообработки - почти четверть всех основных фондов; в этой отрасли занято от трети до половины всех промышленных рабочих. И это естественно, простой перечень подотраслей машиностроения убедительно подтверждает его базовую роль. Вот этот перечень: энергетическое машиностроение; электротехническое; станкостроительная и инструментальная промышленность; приборостроение; тракторное и сельскохозяйственное машиностроение; транспортное; автомобильная и авиационная промышленность; судостроение и др. Другой убедительный факт: в 1970 г. машиностроение СССР выпустило более 30000 наименований изделий.

    Ничего удивительного в том, что эта отрасль - главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1978 г. машиностроение нашей страны потребило 800000 т пластмасс, а в 1960 г. - всего 116000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37-38% всех выпускающихся в нашей стране пластмасс, а к 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизиться потребность, а в том, что другие отрасли народного хозяйства стали применять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности и др. еще более интенсивно.

    При этом уместно отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли. Полимерам стали доверять все более и более ответственные задачи. Из полимеров стали изготавливать все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, и в то же время все чаще полимеры стали применяться в изготовлении крупногабаритных корпусных деталей машин и механизмов, несущих значительные нагрузки. Ниже будет подробнее рассказано о применении полимеров в автомобильной и авиационной промышленности, здесь же упомянем лишь один примечательный факт: несколько лет назад по Москве ходил цельнопластмассовый трамвай. А вот другой факт: четверть всех мелких судов - катеров, шлюпок, лодок и т. п. - теперь строится из пластических масс.

    До недавних пор широкому использованию полимерных материалов в машиностроении препятствовали два, казалось бы, общепризнанных недостатка полимеров: их низкая (по сравнению с марочными сталями) прочность и низкая теплостойкость. О преодолении температурного рубежа рассказано в главе "Шаги в будущее". Что же касается прочностных свойств полимерных материалов, то этот рубеж удалось преодолеть переходом к композиционным материалам, главным образом стекло- и углепластикам. Так что теперь выражение "пластмасса прочнее стали" звучит вполне обоснованно. В то же время полимеры сохранили свои позиции при массовом изготовлении огромного числа тех деталей, от которых не требуется особенно высокая прочность: заглушек, штуцеров, колпачков, рукояток, шкал и корпусов измерительных приборов. Еще одна область, специфическая именно для полимеров, где четче всего проявляются их преимущества перед любыми иными материалами, - это область внутренней и внешней отделки, Мы уже упоминали об этом, говоря о строительстве.

    То же самое можно сказать и о машиностроении. Почти три четверти внутренней отделки салонов легковых автомобилей, автобусов, самолетов, речных и морских судов и пассажирских вагонов выполняется ныне из декоративных пластиков, синтетических пленок и тканей, искусственной кожи и т. п. Более того, для многих машин и аппаратов только использование антикоррозионной отделки синтетическими материалами обеспечило их надежную, долговременную эксплуатацию. К примеру, многократное использование изделия в экстремальных физико-технических условиях (космосе) обеспечивается, в частности, тем, что вся его внешняя поверхность покрыта синтетическими плитками, к тому же приклеенными синтетическим полиуретановым или полиэпоксидным клеем. А аппараты для химического производства? У них внутри бывают такие агрессивные среды, что никакая марочная сталь не выдержала бы. Единственный выход - сделать внутреннюю облицовку из платины или из пленки фторопласта. Гальванические ванны могут работать только при условии, что они сами и конструкции подвески покрыты синтетическими смолами и пластиками.

    Широко применяются полимерные материалы и в такой отрасли народного хозяйства, как приборостроение. Здесь получен самый высокий экономический эффект в среднем в 1,5-2,0 раза выше, чем в других отраслях машиностроения. Объясняется это, в частности, тем, что большая часть полимеров перерабатывается в приборостроении самыми прогрессивными способами, что повышает уровень полезного использования (и безотходность) термопластов, увеличивает коэффициент замены дорогостоящих материалов. Наряду с этим значительно снижаются затраты живого труда. Простейшим и весьма убедительным примером может служить изготовление печатных схем: процесс, не мыслимый без полимерных материалов, а с ними и полностью автоматизированный.

    Есть и другие подотрасли, где использование полимерных материалов обеспечивает и экономию материальных и энергетических ресурсов, и рост производительности труда. Почти полную автоматизацию обеспечило применение полимеров в производстве тормозных систем для транспорта. Неспроста практически все функциональные детали тормозных систем для автомобилей и около 45% для железнодорожного подвижного состава делаются из синтетических пресс-материалов. Около 50% деталей вращения и зубчатых колес изготовляется из прочных конструкционных полимеров, В последнем случае можно отметить две различных тенденции. С одной стороны, все чаще появляются сообщения об изготовлении зубчатых колес для тракторов из капрона. Обрывки отслуживших свое рыболовных сетей, старые чулки и путанку капроновых волокон переплавляют и формуют в шестерни. Эти шестерни могут работать почти без износа в контакте со стальными, вдобавок такая система не нуждается в смазке и почти бесшумна. Другая тенденция - полная замена металлических деталей в редукторах на детали из углепластиков. У них тоже отмечается резкое снижение механических потерь, долговременность срока службы.

    Еще одна область применения полимерных материалов в машиностроении, достойная отдельного упоминания, - изготовление металлорежущего инструмента. По мере расширения использования прочных сталей и сплавов все более жесткие требования предъявляются к обрабатывающему инструменту. И здесь тоже на выручку инструментальщику и станочнику приходят пластмассы. Но не совсем обычные пластмассы сверхвысокой твердости, такие, которые смеют поспорить даже с алмазом. Король твердости, алмаз, еще не свергнут со своего трона, но дело идет к тому. Некоторые окислы (например, из рода фианитов), нитриды, карбиды, уже сегодня демонстрируют не меньшую твердость, да к тому же и большую термостойкость. Вся беда в том, что они пока еще более дороги, чем природные и синтетические алмазы, да к тому же им свойствен "королевский порок" - они в большинстве своем хрупки. Вот и приходится, чтобы удержать их от растрескивания, каждое зернышко такого абразива окружать полимерной упаковкой чаще всего из фенолформальдегидных смол. Поэтому сегодня три четверти абразивного инструмента выпускается с применением синтетических смол.

    Таковы лишь некоторые примеры и основные тенденции внедрения полимерных материалов в подотрасли машиностроения. Самое же первое место по темпам роста применения пластических масс среди других подотраслей занимает сейчас автомобильная промышленность. Десять лет назад в автомашинах использовали от 7 до 12 видов различных пластиков, к концу 70-х годов это число перешагнуло за 30. С точки зрения химической структуры, как и следовало ожидать, первые места по объему занимают стирольные пластики, поливинилхлорид и полиолефины. Пока еще немного уступают им, но активно догоняют полиуретаны, полиэфиры, акрилаты и другие полимеры. Перечень деталей автомобиля, которые в тех или иных моделях в наши дни изготовляют из полимеров, занял бы не одну страницу. Кузова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шланги, сиденья, дверцы, капот и т. д. и т. п. Более того, несколько разных фирм за рубежом уже объявили о начале производства цельнопластмассовых автомобилей. Наиболее характерные тенденции в применении пластмасс для автомобилестроения, в общем, те же, что и в других подотраслях. Во-первых, это экономия материалов: безотходное или малоотходное формование больших блоков и узлов. Во-вторых, благодаря использованию легких и облегченных полимерных материалов снижается общий вес автомобиля, а значит, будет экономиться горючее при его эксплуатации. В-третьих, выполненные как единое целое, блоки пластмассовых деталей существенно упрощают сборку и позволяют экономить живой труд.

    Кстати, те же преимущества стимулируют и широкое применение полимерных материалов в авиационной промышленности. Например, замена алюминиевого сплава графитопластиком при изготовлении предкрылка крыла самолета позволяет сократить количество деталей с 47 до 14, крепежа - с 1464 до 8 болтов, снизить вес на 22%, стоимость - на 25%. При этом запас прочности изделия составляет 178%. Лопасти вертолета, лопатки вентиляторов реактивных двигателей рекомендуют изготовлять из поликонденсационных смол, наполненных алюмосиликатными волокнами, что позволяет снизить вес самолета при сохранении прочности и надежности. По английскому патенту № 2047188 покрытие несущих поверхностей самолетов или лопастей роторов вертолетов слоем полиуретана толщиной всего 0,65 мм в 1,5-2 раза повышает их стойкость к дождевой эрозии. Жесткие требования были поставлены перед конструкторами первого англо-французского сверхзвукового пассажирского самолета "Конкорд". Было рассчитано, что от трения об атмосферу внешняя поверхность самолета будет разогреваться до 120-150° С, ив то же время требовалось, чтобы она не поддавалась эрозии в течение по меньшей мере 20000 ч. Решение проблемы было найдено с помощью поверхностного покрытия защиты самолета тончайшей пленкой фторопласта. Не меньшие трудности испытали конструкторы "Конкорда" и при решении вопросов герметизации топливных и гидравлических систем. И здесь выход из затруднительного положения обеспечили полисилоксановые и фторуглеродные эластомеры, герметики и мастики. Кстати, об эластомерах. По ходу изложения сведений о применении полимерных материалов в машиностроении мы практически не затрагивали этот тип полимеров. А ведь они тоже широко применяются в форме манжет и сальников, прокладок, трубок и шин. Для автомобиля очень существенна маслобензостойкость этих сальников, прокладок и шлангов, что обеспечивается применением бутадиенакрилонитрильного, полихлоропренового и тому подобных каучуков. Но вот недавно, в связи с повышением цен на нефтепродукты, начали появляться сообщения о применении в автомобилях нового горючего - спирта. В связи с этим можно предполагать, что в ближайшем будущем автомобилестроители потребуют от Химиков спиртоустойчивых резин. Такие резины и иные полимерные материалы создать не так уж и трудно, был бы при этом шофер спиртоустойчив. Ну, а теперь перейдем к описанию нескольких колоритных и малоизвестных случаев применения полимерных материалов в машиностроении. (БСЭ, 3-е изд., т. 15; Plast. World, 1979, 37, № 2).

    Режущая нить

    Можно ли перерезать стальную болванку синтетической нитью? Чтобы это удалось, надо, чтобы нить была сверхпрочной и высокотвердой, либо сталь помягчала. Да и зачем это нужно? Ту же болванку можно распилить закаленным ножовочным полотном. Но в том-то и беда, что после подобной распилки в стали остаются вредные остаточные напряжения и деформации. А смягчить сталь и другие металлы можно специальными химическими реагентами - для каждого металла свои химикаты. Синтетическая нить будет только доставлять эти химикаты к месту будущего распила. Именно такой метод разработали польские химики. Нить движется по поверхности распиливаемой заготовки с частотой 24 хода в минуту. В конце каждого хода продукты реакции растворителя с металлом удаляются, нить пропитывают свежей порцией, и она делает обратный ход. (Юный техник, 1965, № 8).

    Пластмассовые ракеты

    Оболочку двигателя ракет изготавливают из углепластика, наматывая на трубу; ленту из углеволокна, предварительно пропитанную эпоксидными смолами. После отверждения смолы и удаления вспомогательного сердечника получают трубу с содержанием углеволокна более двух третей, достаточно прочную на растяжение и изгиб, стойкую к вибрациям и пульсации. Остается начинить заготовку ракетным топливом, приладить к ней отсек для приборов и фотокамер, и можно отправлять ее в полет. (Compsites, 1981, 12, № 1).

    Пластмассовый шлюз

    На одном из каналов в районе Быгдощи установлен первый в Польше (а вероятно, и первый в мире) цельнопластмассовый шлюз. Работает шлюз безукоризненно.

    Пластмассовые элементы рассчитаны на более чем 20-летний срок эксплуатационной службы. Конструкции же из дубовых балок приходилось менять каждые 6 лет. (Наука и жизнь, 1969, № 3).

    Сварка без нагрева

    Как прикрепить друг к другу две пластмассовые панели? Можно приклеить, но тогда необходимо оборудовать рабочее место системой вентиляции. Можно привинтить или приклепать, но тогда надо загодя сверлить отверстия. Можно приварить, если обе панели термопластичны, но и тут без вентиляции не обойтись, да к тому же из-за локальных перегревов соединение может оказаться продеструктировавшим и непрочным. Самый лучший способ и оборудование для него, разработала французская фирма "Брансон". Генератор ультразвука мощностью 3 кВт, частотой 20 кГц, "звуководы" - сонотроды - и все. Наконечник сонотрода, вибрируя, проникает сквозь верхнюю из скрепляемых деталей толщиной до 8 мм, погружается в нижнюю и увлекает за собой расплав верхнего полимера. Энергия ультразвуковых колебаний превращается в тепло лишь локально, получается точечная сварка. Тот же метод и то же оборудование годятся и для того, чтобы "замуровывать" в пластмассу различные крепежные и фурнитурные детали. Наиболее эффективно применение ультразвуковой сварки при производстве электроосветительной аппаратуры, деталей отделки автомобилей, вентиляционных систем в строительстве резервуаров, в авиапромышленности и т. д. Особенно рекомендуется ультразвуковая сварка при изготовлении изделий из полиолефинов, стирольных пластиков, полиамидов, поликарбонатов, различных виниловых и акриловых смол. (Offic. plast et caoutch., 1979, 26, № 275).

    Полиуретаны против хулиганов

    Это сообщение не нуждается в комментариях:

    "Полиуретановые покрытия обладают высокой твердостью, долговечностью свыше 10 лет и хорошим глянцем. Их применение, возможно, позволит решить проблему долговечной окраски вагонов метрополитена Нью-Йорка. На таких покрытиях не удается писать и рисовать ни карандашом, ни фломастером, что значительно снижает затраты на уборку вагонов". (Mod. Paint and Coat, 1979, 69, № 11).

    Универсальные пластмассы

    Оригинальную точку зрения на практическое применение полимерных материалов, в частности в приборостроении, высказал недавно обозреватель английского журнала "Мир пластмасс".

    По его мнению, все разнообразие требований к свойствам пластмасс можно удовлетворить восемью полимерами: АБС-сополимером, найлоном, фенольными смолами, полиэтиленом и полипропиленом, полиуретановым пенопластом и поливинилхлоридом.

    Автор отметил, что отношение стоимости к объему в последнее время закономерно возрастает для всех материалов, но для синтетических органических полимеров этот рост идет медленнее, чем для стали, алюминия и стекла. Основными преимуществами пластмасс при их использовании в приборостроении автор считает:

    1. Детали из полимерных материалов можно формовать без их последующей обработки, так как в процессе формования обеспечивается требуемая окраска и внешний вид готового изделия.

    2. Конструктору предоставляется возможность разрабатывать детали со сложной конфигурацией при значительной экономии рабочего времени и стоимости.

    3. Присущие полимерным материалам характеристики термических и электрофизических свойств предотвращают повреждение электрических приборов и уменьшают их теплоотдачу.

    4. Благодаря легкому весу изделий из пластмасс сокращаются транспортные расходы и облегчается их применение.

    Автор утверждает также, что наибольшее применение пластмассы получили в пяти группах приборов: в крупногабаритных конструкциях; бытовых электроприборах; радиоэлектронике; кондиционерах и увлажнителях. Именно для этих пяти групп, утверждает обозреватель, достаточно восьми основных полимеров, и тут же иллюстрирует это примерами новейших выставочных экспонатов холодильников, стиральных и посудомоечных машин, вентиляторов, пылесосов, радиоустановок, телевизоров, счетных машин, лабораторного оборудования и т. п., вплоть до домашних масловыжималок, тостеров и кофеварок. К сожалению, перечень полимеров, из которых изготовлены эти приборы, оказывается намного шире того восьмичленного списка, что приведен в начале обзора. Тут и ацетальные смолы, и разнообразные полиэфиры, и поликарбонат, и полифениленоксид и т. д., к тому же еще многие, как правило, не в чистом виде, а в составе композиций друг с другом и различными волокнистыми и порошкообразными наполнителями.